MNN/source/shape/ShapeDynamicQuant.cpp

51 lines
1.7 KiB
C++
Raw Normal View History

2024-04-19 11:58:21 +08:00
//
// ShapeDet.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
namespace MNN {
class DynamicQuantComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(outputs.size() == 3);
if (inputs.size() != 1) {
MNN_ERROR("DynamicQuant only accept 1 input\n");
return false;
}
auto input = inputs[0];
auto output = outputs[0];
int dimSize = input->dimensions();
output->buffer().dimensions = dimSize;
for (int i = 0; i < dimSize; ++i) {
output->buffer().dim[i].extent = input->buffer().dim[i].extent;
}
auto scale = outputs[1];
auto zeroPoint = outputs[2];
scale->buffer().dimensions = 1;
zeroPoint->buffer().dimensions = 1;
scale->buffer().dim[0].extent = 1;
zeroPoint->buffer().dim[0].extent = 1;
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
output->buffer().type = halide_type_of<int8_t>();
TensorUtils::getDescribe(scale)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
scale->buffer().type = halide_type_of<float>();
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
zeroPoint->buffer().type = halide_type_of<float>();
return true;
}
};
REGISTER_SHAPE(DynamicQuantComputer, OpType_DynamicQuant);
} // namespace MNN