mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
	
	
		
			299 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			299 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
|  | //
 | ||
|  | //  dataLoaderTest.cpp
 | ||
|  | //  MNN
 | ||
|  | //
 | ||
|  | //  Created by MNN on 2019/11/20.
 | ||
|  | //  Copyright © 2018, Alibaba Group Holding Limited
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #include <MNN/expr/ExprCreator.hpp>
 | ||
|  | #include <cmath>
 | ||
|  | #include <iostream>
 | ||
|  | #include <vector>
 | ||
|  | #include <algorithm>
 | ||
|  | #include "DataLoader.hpp"
 | ||
|  | #include "DataLoaderConfig.hpp"
 | ||
|  | #include "DemoUnit.hpp"
 | ||
|  | #include "LambdaTransform.hpp"
 | ||
|  | #include "MnistDataset.hpp"
 | ||
|  | #include "RandomSampler.hpp"
 | ||
|  | #include "StackTransform.hpp"
 | ||
|  | #include "TransformDataset.hpp"
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | 
 | ||
|  | class DataLoaderTest : public DemoUnit { | ||
|  | public: | ||
|  |     // this function is an example to use the lambda transform
 | ||
|  |     // here we use lambda transform to normalize data from 0~255 to 0~1
 | ||
|  |     static Example func(Example example) { | ||
|  |         // an easier way to do this
 | ||
|  |         auto cast = _Cast(example.data[0], halide_type_of<float>()); | ||
|  |         return {{_Multiply(cast, _Const(1.0f / 255.0f)), example.data[1]}, {example.target}}; | ||
|  |     } | ||
|  | 
 | ||
|  |     virtual int run(int argc, const char* argv[]) override { | ||
|  |         if (argc != 2) { | ||
|  |             cout << "usage: ./runTrainDemo.out DataLoaderTest /path/to/unzipped/mnist/data/" << endl; | ||
|  |             return 0; | ||
|  |         } | ||
|  | 
 | ||
|  |         const int testCount = 6; | ||
|  |         int passedTestCount = 0; | ||
|  | 
 | ||
|  |         std::string root = argv[1]; | ||
|  | 
 | ||
|  |         // train data loader
 | ||
|  |         const size_t trainDatasetSize = 60000; | ||
|  |         auto trainDataset             = std::make_shared<MnistDataset>(root, MnistDataset::Mode::TRAIN); | ||
|  | 
 | ||
|  |         auto trainSampler = std::make_shared<RandomSampler>(trainDataset->size()); | ||
|  | 
 | ||
|  |         const size_t trainBatchSize  = 7; | ||
|  |         const size_t trainNumWorkers = 4; | ||
|  |         auto trainConfig             = std::make_shared<DataLoaderConfig>(trainBatchSize, trainNumWorkers); | ||
|  | 
 | ||
|  |         DataLoader trainDataLoader(trainDataset, trainSampler, trainConfig); | ||
|  | 
 | ||
|  |         auto images                 = trainDataset->images(); | ||
|  |         auto labels                 = trainDataset->labels(); | ||
|  |         const int32_t kImageRows    = 28; | ||
|  |         const int32_t kImageColumns = 28; | ||
|  | 
 | ||
|  |         const size_t iterations = trainDatasetSize / trainBatchSize; | ||
|  | 
 | ||
|  |         auto samplerIndices = trainSampler->indices(); | ||
|  |         sort(samplerIndices.begin(), samplerIndices.end()); | ||
|  |         for (int i = 0; i < samplerIndices.size(); i++) { | ||
|  |             MNN_ASSERT(samplerIndices[i] == i); | ||
|  |         } | ||
|  | 
 | ||
|  |         for (int i = 0; i < iterations; i++) { | ||
|  |             auto trainData = trainDataLoader.next(); | ||
|  | 
 | ||
|  |             for (int j = 0; j < trainData.size(); j++) { | ||
|  |                 auto index = int(trainData[j].data[1]->readMap<float>()[0]); | ||
|  | 
 | ||
|  |                 auto data  = trainData[j].data[0]->readMap<uint8_t>(); | ||
|  |                 auto label = trainData[j].target[0]->readMap<uint8_t>(); | ||
|  | 
 | ||
|  |                 auto trueData  = images->readMap<uint8_t>() + kImageRows * kImageColumns * index; | ||
|  |                 auto trueLabel = labels->readMap<uint8_t>() + index; | ||
|  | 
 | ||
|  |                 for (int k = 0; k < kImageRows * kImageColumns; k++) { | ||
|  |                     MNN_ASSERT(data[k] == trueData[k]); | ||
|  |                 } | ||
|  |                 MNN_ASSERT(label[0] == trueLabel[0]); | ||
|  |             } | ||
|  |         } | ||
|  |         trainDataLoader.clean(); | ||
|  | 
 | ||
|  |         passedTestCount++; | ||
|  |         cout << "[" << passedTestCount << " / " << testCount << "] passed." << endl; | ||
|  | 
 | ||
|  |         // the lambda transform for one example, we also can do it in batch
 | ||
|  |         auto trainLambdaTransform    = std::make_shared<LambdaTransform>(func); | ||
|  |         auto trainLambdaTransDataset = std::make_shared<BatchTransformDataset>(trainDataset, trainLambdaTransform); | ||
|  | 
 | ||
|  |         DataLoader trainLambdaDataLoader(trainLambdaTransDataset, trainSampler, trainConfig); | ||
|  | 
 | ||
|  |         samplerIndices = trainSampler->indices(); | ||
|  |         sort(samplerIndices.begin(), samplerIndices.end()); | ||
|  |         for (int i = 0; i < samplerIndices.size(); i++) { | ||
|  |             MNN_ASSERT(samplerIndices[i] == i); | ||
|  |         } | ||
|  |         std::vector<int> tempIndex; | ||
|  |         for (int i = 0; i < iterations; i++) { | ||
|  |             auto trainData = trainLambdaDataLoader.next(); | ||
|  | 
 | ||
|  |             for (int j = 0; j < trainData.size(); j++) { | ||
|  |                 auto index = int(trainData[j].data[1]->readMap<float>()[0]); | ||
|  |                 tempIndex.emplace_back(index); | ||
|  | 
 | ||
|  |                 auto data  = trainData[j].data[0]->readMap<float>(); | ||
|  |                 auto label = trainData[j].target[0]->readMap<uint8_t>(); | ||
|  | 
 | ||
|  |                 auto trueData  = images->readMap<uint8_t>() + kImageRows * kImageColumns * index; | ||
|  |                 auto trueLabel = labels->readMap<uint8_t>() + index; | ||
|  | 
 | ||
|  |                 for (int k = 0; k < kImageRows * kImageColumns; k++) { | ||
|  |                     MNN_ASSERT(fabs(data[k] - (trueData[k] / 255.0f)) < 1e-6); | ||
|  |                 } | ||
|  |                 MNN_ASSERT(label[0] == trueLabel[0]); | ||
|  |             } | ||
|  |         } | ||
|  |         trainLambdaDataLoader.clean(); | ||
|  | 
 | ||
|  |         passedTestCount++; | ||
|  |         cout << "[" << passedTestCount << " / " << testCount << "] passed." << endl; | ||
|  | 
 | ||
|  |         // the stack transform, stack [1, 28, 28] to [n, 1, 28, 28]
 | ||
|  |         auto trainStackTransform    = std::make_shared<StackTransform>(); | ||
|  |         auto trainStackTransDataset = std::make_shared<BatchTransformDataset>(trainDataset, trainStackTransform); | ||
|  | 
 | ||
|  |         DataLoader trainStackDataLoader(trainStackTransDataset, trainSampler, trainConfig); | ||
|  | 
 | ||
|  |         samplerIndices = trainSampler->indices(); | ||
|  |         sort(samplerIndices.begin(), samplerIndices.end()); | ||
|  |         for (int i = 0; i < samplerIndices.size(); i++) { | ||
|  |             MNN_ASSERT(samplerIndices[i] == i); | ||
|  |         } | ||
|  | 
 | ||
|  |         for (int i = 0; i < iterations; i++) { | ||
|  |             auto trainData = trainStackDataLoader.next(); | ||
|  |             MNN_ASSERT(trainData.size() == 1); | ||
|  | 
 | ||
|  |             std::vector<int> shape = {trainBatchSize, 1, 28, 28}; | ||
|  |             MNN_ASSERT(trainData[0].data[0]->getInfo()->dim == shape); | ||
|  | 
 | ||
|  |             shape = {trainBatchSize}; | ||
|  |             MNN_ASSERT(trainData[0].target[0]->getInfo()->dim == shape); | ||
|  | 
 | ||
|  |             auto data  = trainData[0].data[0]->readMap<uint8_t>(); | ||
|  |             auto label = trainData[0].target[0]->readMap<uint8_t>(); | ||
|  | 
 | ||
|  |             for (int j = 0; j < trainBatchSize; j++) { | ||
|  |                 auto index = int(trainData[0].data[1]->readMap<float>()[j]); | ||
|  | 
 | ||
|  |                 auto trueData  = images->readMap<uint8_t>() + kImageRows * kImageColumns * index; | ||
|  |                 auto trueLabel = labels->readMap<uint8_t>() + index; | ||
|  | 
 | ||
|  |                 for (int k = 0; k < kImageRows * kImageColumns; k++) { | ||
|  |                     int dataIndex = j * (kImageRows * kImageColumns) + k; | ||
|  |                     MNN_ASSERT(data[dataIndex] == trueData[k]); | ||
|  |                 } | ||
|  |                 MNN_ASSERT(label[j] == trueLabel[0]); | ||
|  |             } | ||
|  |         } | ||
|  |         trainStackDataLoader.clean(); | ||
|  | 
 | ||
|  |         passedTestCount++; | ||
|  |         cout << "[" << passedTestCount << " / " << testCount << "] passed." << endl; | ||
|  | 
 | ||
|  |         // here we test Lambda + Stack
 | ||
|  |         auto trainLambdaStackTransDataset = | ||
|  |             std::make_shared<BatchTransformDataset>(trainLambdaTransDataset, trainStackTransform); | ||
|  | 
 | ||
|  |         DataLoader trainLambdaStackDataLoader(trainLambdaStackTransDataset, trainSampler, trainConfig); | ||
|  | 
 | ||
|  |         samplerIndices = trainSampler->indices(); | ||
|  |         sort(samplerIndices.begin(), samplerIndices.end()); | ||
|  |         for (int i = 0; i < samplerIndices.size(); i++) { | ||
|  |             MNN_ASSERT(samplerIndices[i] == i); | ||
|  |         } | ||
|  | 
 | ||
|  |         for (int i = 0; i < iterations; i++) { | ||
|  |             auto trainData = trainLambdaStackDataLoader.next(); | ||
|  |             MNN_ASSERT(trainData.size() == 1); | ||
|  | 
 | ||
|  |             std::vector<int> shape = {trainBatchSize, 1, 28, 28}; | ||
|  |             MNN_ASSERT(trainData[0].data[0]->getInfo()->dim == shape); | ||
|  | 
 | ||
|  |             shape = {trainBatchSize}; | ||
|  |             MNN_ASSERT(trainData[0].target[0]->getInfo()->dim == shape); | ||
|  | 
 | ||
|  |             auto data  = trainData[0].data[0]->readMap<float>(); | ||
|  |             auto label = trainData[0].target[0]->readMap<uint8_t>(); | ||
|  | 
 | ||
|  |             for (int j = 0; j < trainBatchSize; j++) { | ||
|  |                 auto index = int(trainData[0].data[1]->readMap<float>()[j]); | ||
|  | 
 | ||
|  |                 auto trueData  = images->readMap<uint8_t>() + kImageRows * kImageColumns * index; | ||
|  |                 auto trueLabel = labels->readMap<uint8_t>() + index; | ||
|  | 
 | ||
|  |                 for (int k = 0; k < kImageRows * kImageColumns; k++) { | ||
|  |                     int dataIndex = j * (kImageRows * kImageColumns) + k; | ||
|  |                     MNN_ASSERT(fabs(data[dataIndex] - (trueData[k] / 255.0f)) < 1e-6); | ||
|  |                 } | ||
|  |                 MNN_ASSERT(label[j] == trueLabel[0]); | ||
|  |             } | ||
|  |         } | ||
|  |         trainLambdaStackDataLoader.clean(); | ||
|  | 
 | ||
|  |         passedTestCount++; | ||
|  |         cout << "[" << passedTestCount << " / " << testCount << "] passed." << endl; | ||
|  | 
 | ||
|  |         // here we test Stack + Lambda
 | ||
|  |         auto trainStackLambdaTransDataset = | ||
|  |             std::make_shared<BatchTransformDataset>(trainStackTransDataset, trainLambdaTransform); | ||
|  | 
 | ||
|  |         DataLoader trainStackLamdaDataLoader(trainStackLambdaTransDataset, trainSampler, trainConfig); | ||
|  | 
 | ||
|  |         samplerIndices = trainSampler->indices(); | ||
|  |         sort(samplerIndices.begin(), samplerIndices.end()); | ||
|  |         for (int i = 0; i < samplerIndices.size(); i++) { | ||
|  |             MNN_ASSERT(samplerIndices[i] == i); | ||
|  |         } | ||
|  | 
 | ||
|  |         for (int i = 0; i < iterations; i++) { | ||
|  |             auto trainData = trainStackLamdaDataLoader.next(); | ||
|  |             MNN_ASSERT(trainData.size() == 1); | ||
|  | 
 | ||
|  |             std::vector<int> shape = {trainBatchSize, 1, 28, 28}; | ||
|  |             MNN_ASSERT(trainData[0].data[0]->getInfo()->dim == shape); | ||
|  | 
 | ||
|  |             shape = {trainBatchSize}; | ||
|  |             MNN_ASSERT(trainData[0].target[0]->getInfo()->dim == shape); | ||
|  | 
 | ||
|  |             auto data  = trainData[0].data[0]->readMap<float>(); | ||
|  |             auto label = trainData[0].target[0]->readMap<uint8_t>(); | ||
|  | 
 | ||
|  |             for (int j = 0; j < trainBatchSize; j++) { | ||
|  |                 auto index = int(trainData[0].data[1]->readMap<float>()[j]); | ||
|  | 
 | ||
|  |                 auto trueData  = images->readMap<uint8_t>() + kImageRows * kImageColumns * index; | ||
|  |                 auto trueLabel = labels->readMap<uint8_t>() + index; | ||
|  | 
 | ||
|  |                 for (int k = 0; k < kImageRows * kImageColumns; k++) { | ||
|  |                     int dataIndex = j * (kImageRows * kImageColumns) + k; | ||
|  |                     MNN_ASSERT(fabs(data[dataIndex] - (trueData[k] / 255.0f)) < 1e-6); | ||
|  |                 } | ||
|  |                 MNN_ASSERT(label[j] == trueLabel[0]); | ||
|  |             } | ||
|  |         } | ||
|  |         trainStackLamdaDataLoader.clean(); | ||
|  | 
 | ||
|  |         passedTestCount++; | ||
|  |         cout << "[" << passedTestCount << " / " << testCount << "] passed." << endl; | ||
|  | 
 | ||
|  |         // test makeDataLoader
 | ||
|  |         auto madeDataLoader = DataLoader::makeDataLoader( | ||
|  |             trainDataset, {nullptr, trainStackTransform, nullptr, trainLambdaTransform, nullptr}, 7); | ||
|  | 
 | ||
|  |         for (int i = 0; i < iterations; i++) { | ||
|  |             auto trainData = madeDataLoader->next(); | ||
|  |             MNN_ASSERT(trainData.size() == 1); | ||
|  | 
 | ||
|  |             std::vector<int> shape = {trainBatchSize, 1, 28, 28}; | ||
|  |             MNN_ASSERT(trainData[0].data[0]->getInfo()->dim == shape); | ||
|  | 
 | ||
|  |             shape = {trainBatchSize}; | ||
|  |             MNN_ASSERT(trainData[0].target[0]->getInfo()->dim == shape); | ||
|  | 
 | ||
|  |             auto data  = trainData[0].data[0]->readMap<float>(); | ||
|  |             auto label = trainData[0].target[0]->readMap<uint8_t>(); | ||
|  | 
 | ||
|  |             for (int j = 0; j < trainBatchSize; j++) { | ||
|  |                 auto index = int(trainData[0].data[1]->readMap<float>()[j]); | ||
|  | 
 | ||
|  |                 auto trueData  = images->readMap<uint8_t>() + kImageRows * kImageColumns * index; | ||
|  |                 auto trueLabel = labels->readMap<uint8_t>() + index; | ||
|  | 
 | ||
|  |                 for (int k = 0; k < kImageRows * kImageColumns; k++) { | ||
|  |                     int dataIndex = j * (kImageRows * kImageColumns) + k; | ||
|  |                     MNN_ASSERT(fabs(data[dataIndex] - (trueData[k] / 255.0f)) < 1e-6); | ||
|  |                 } | ||
|  |                 MNN_ASSERT(label[j] == trueLabel[0]); | ||
|  |             } | ||
|  |         } | ||
|  |         madeDataLoader->clean(); | ||
|  | 
 | ||
|  |         passedTestCount++; | ||
|  |         cout << "[" << passedTestCount << " / " << testCount << "] passed." << endl; | ||
|  | 
 | ||
|  |         return 0; | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | DemoUnitSetRegister(DataLoaderTest, "DataLoaderTest"); |