mirror of https://github.com/alibaba/MNN.git
				
				
				
			
		
			
	
	
		
			31 lines
		
	
	
		
			921 B
		
	
	
	
		
			C++
		
	
	
	
		
		
			
		
	
	
			31 lines
		
	
	
		
			921 B
		
	
	
	
		
			C++
		
	
	
	
|  | //
 | ||
|  | //  ShapeHistogram.cpp
 | ||
|  | //  MNN
 | ||
|  | //
 | ||
|  | //  Created by MNN on 2022/07/26.
 | ||
|  | //  Copyright © 2018, Alibaba Group Holding Limited
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #include "shape/SizeComputer.hpp"
 | ||
|  | #include "core/Macro.h"
 | ||
|  | #include "math.h"
 | ||
|  | 
 | ||
|  | namespace MNN { | ||
|  | 
 | ||
|  | class ShapeHistogram : public SizeComputer { | ||
|  |     virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs, | ||
|  |                                const std::vector<Tensor*>& outputs) const override { | ||
|  |         MNN_ASSERT(inputs.size() == 1 && outputs.size() == 1); | ||
|  |          | ||
|  |         auto output = outputs[0]; | ||
|  |         output->buffer().dimensions = 1; | ||
|  |         output->setLength(0, op->main_as_ArgMax()->outMaxVal()); | ||
|  |         output->buffer().type = halide_type_of<float>(); | ||
|  |         TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat; | ||
|  |         return true; | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | REGISTER_SHAPE(ShapeHistogram, OpType_Histogram); | ||
|  | } // namespace MNN
 |