| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | //
 | 
					
						
							|  |  |  | //  ShapeScatterNd.cpp
 | 
					
						
							|  |  |  | //  MNN
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | //  Created by MNN on 2019/11/27.
 | 
					
						
							|  |  |  | //  Copyright © 2018, Alibaba Group Holding Limited
 | 
					
						
							|  |  |  | //
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  | #include "shape/SizeComputer.hpp"
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | #include "core/Macro.h"
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | namespace MNN { | 
					
						
							|  |  |  | // Size Computer
 | 
					
						
							|  |  |  | class ShapeScatterNd : public SizeComputer { | 
					
						
							|  |  |  |     bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs, | 
					
						
							|  |  |  |                        const std::vector<Tensor *> &outputs) const override { | 
					
						
							| 
									
										
										
										
											2022-02-18 11:30:27 +08:00
										 |  |  |         MNN_ASSERT(3 <= inputs.size()); | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  |         auto indices = inputs[0]; | 
					
						
							|  |  |  |         auto updates = inputs[1]; | 
					
						
							|  |  |  |         auto shape   = inputs[2]; | 
					
						
							|  |  |  |         auto output  = outputs[0]; | 
					
						
							|  |  |  |         MNN_CHECK(shape->dimensions() == 1, "shape rank should be one"); | 
					
						
							|  |  |  |         const int indicesDimension = indices->dimensions(); | 
					
						
							| 
									
										
										
										
											2020-11-05 16:41:56 +08:00
										 |  |  |         //MNN_CHECK(indices->length(indicesDimension - 1) == 1, "indices.shape[-1] = shape.rank");
 | 
					
						
							| 
									
										
										
										
											2019-12-27 22:16:57 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |         const int outerDims = indicesDimension - 1; | 
					
						
							|  |  |  |         for (int i = 0; i < outerDims; ++i) { | 
					
						
							|  |  |  |             MNN_CHECK(indices->length(i) == updates->length(i), "indices shape does not match updates'"); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         const int dimension = shape->length(0); | 
					
						
							|  |  |  |         MNN_CHECK(updates->dimensions() == dimension, "updates dimension should be equal to given shape"); | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         output->buffer().dimensions = dimension; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         auto shapeData = shape->host<int>(); | 
					
						
							|  |  |  |         for (int i = 0; i < dimension; ++i) { | 
					
						
							|  |  |  |             output->setLength(i, shapeData[i]); | 
					
						
							|  |  |  |         } | 
					
						
							|  |  |  |         output->buffer().type = updates->buffer().type; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(updates)->dimensionFormat; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |         return true; | 
					
						
							|  |  |  |     } | 
					
						
							|  |  |  | }; | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | REGISTER_SHAPE_INPUTS(ShapeScatterNd, OpType_ScatterNd, (std::vector<int>{2})); | 
					
						
							|  |  |  | } // namespace MNN
 |