mirror of https://github.com/alibaba/MNN.git
68 lines
2.3 KiB
C++
68 lines
2.3 KiB
C++
|
//
|
||
|
// ShapePool.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2019/01/10.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
#include "Macro.h"
|
||
|
#include "SizeComputer.hpp"
|
||
|
|
||
|
namespace MNN {
|
||
|
class PoolSizeComputer : public SizeComputer {
|
||
|
public:
|
||
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
||
|
const std::vector<Tensor*>& outputs) const override {
|
||
|
MNN_ASSERT(1 == inputs.size());
|
||
|
MNN_ASSERT(1 == outputs.size());
|
||
|
|
||
|
auto input = inputs[0];
|
||
|
auto output = outputs[0];
|
||
|
|
||
|
::memcpy(output->buffer().dim, input->buffer().dim, input->buffer().dimensions * sizeof(halide_dimension_t));
|
||
|
|
||
|
auto layer = op->main_as_Pool();
|
||
|
int outw = 1;
|
||
|
int outh = 1;
|
||
|
if (!layer->isGlobal()) {
|
||
|
int w = input->width();
|
||
|
int h = input->height();
|
||
|
if (layer->padX() > 0)
|
||
|
w += layer->padX() * 2;
|
||
|
if (layer->padY() > 0)
|
||
|
h += layer->padY() * 2;
|
||
|
|
||
|
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
|
||
|
outw = ceil((float)w / (float)layer->strideX());
|
||
|
outh = ceil((float)h / (float)layer->strideY());
|
||
|
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
|
||
|
outw = ceil((float)(w - layer->kernelX() + 1) / (float)layer->strideX());
|
||
|
outh = ceil((float)(h - layer->kernelY() + 1) / (float)layer->strideY());
|
||
|
} else {
|
||
|
outw = UP_DIV(w - layer->kernelX(), layer->strideX()) + 1;
|
||
|
outh = UP_DIV(h - layer->kernelY(), layer->strideY()) + 1;
|
||
|
}
|
||
|
}
|
||
|
if (outw <= 0 || outh <= 0) {
|
||
|
return false;
|
||
|
}
|
||
|
output->buffer().dim[3].extent = outw;
|
||
|
output->buffer().dim[2].extent = outh;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
||
|
const std::vector<Tensor*>& outputs) const override {
|
||
|
auto size = (float)outputs[0]->elementSize() / 1024.0f / 1024.0f;
|
||
|
auto layer = op->main_as_Pool();
|
||
|
return size * layer->kernelX() * layer->kernelY();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
REGISTER_SHAPE(PoolSizeComputer, OpType_Pooling);
|
||
|
} // namespace MNN
|