MNN/source/shape/ShapeGridSample.cpp

71 lines
2.6 KiB
C++
Raw Normal View History

2021-04-08 15:34:23 +08:00
//
// ShapeGridSample.cpp
// MNN
//
// Created by MNN on 2021/03/24.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
namespace MNN {
class GridSampleSizeComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
// https://pytorch.org/docs/1.7.1/nn.functional.html?highlight=grid_sample#torch.nn.functional.grid_sample
// inputs[0] is input, inputs[1] is grid
2023-12-04 11:12:20 +08:00
MNN_ASSERT(2 <= inputs.size());
2021-04-08 15:34:23 +08:00
MNN_ASSERT(1 == outputs.size());
2023-12-04 11:12:20 +08:00
auto &ibInput0 = inputs[0]->buffer();
auto &ob = outputs[0]->buffer();
ob.type = ibInput0.type;
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(
inputs[0])->dimensionFormat;
if (inputs.size() > 2) {
// For Grad, just copy the shape
ob.dimensions = inputs[2]->length(0);
auto shapePtr = inputs[2]->host<int>();
for (int i=0; i<ob.dimensions; ++i) {
ob.dim[i].extent = shapePtr[i];
}
return true;
}
2022-06-24 18:30:05 +08:00
int input_dim = inputs[0]->buffer().dimensions;
int grid_dim = inputs[1]->buffer().dimensions;
MNN_ASSERT((4 == input_dim && 4 == grid_dim) || (5 == input_dim && 5 == grid_dim));
2022-12-30 15:18:58 +08:00
if (inputs[0]->buffer().dim[0].extent != inputs[1]->buffer().dim[0].extent) {
return false;
}
2022-06-24 18:30:05 +08:00
MNN_ASSERT(grid_dim - 2 == inputs[1]->buffer().dim[grid_dim - 1].extent);
2021-04-08 15:34:23 +08:00
auto &ibInput1 = inputs[1]->buffer();
ob.dimensions = ibInput1.dimensions;
ob.dim[0].extent = ibInput0.dim[0].extent;
ob.dim[1].extent = ibInput0.dim[1].extent;
ob.dim[2].extent = ibInput1.dim[1].extent;
ob.dim[3].extent = ibInput1.dim[2].extent;
2022-06-24 18:30:05 +08:00
if (grid_dim == 5) {
ob.dim[4].extent = ibInput1.dim[3].extent;
}
2021-04-08 15:34:23 +08:00
return true;
}
virtual float onComputeFlops(const MNN::Op *op, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
auto gridSampleParam = op->main_as_GridSample();
if (gridSampleParam->mode() == MNN::SampleMode_BILINEAR) {
return 4 * SizeComputer::onComputeFlops(op, inputs, outputs);
}
return SizeComputer::onComputeFlops(op, inputs, outputs);
}
};
2023-12-04 11:12:20 +08:00
REGISTER_SHAPE_INPUTS(GridSampleSizeComputer, OpType_GridSample, {2});
2021-04-08 15:34:23 +08:00
} // namespace MNN