MNN/source/shape/ShapeROIPooling.cpp

48 lines
1.6 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// ShapeROIPooling.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
2020-11-05 16:41:56 +08:00
#include "shape/SizeComputer.hpp"
2019-12-27 22:16:57 +08:00
#include "core/Macro.h"
2019-04-17 10:49:11 +08:00
namespace MNN {
// Size Computer
class ROIPoolingComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op *op, const std::vector<Tensor *> &inputs,
const std::vector<Tensor *> &outputs) const override {
2023-03-20 11:32:29 +08:00
MNN_ASSERT(2 == inputs.size() || 3 == inputs.size());
2019-04-17 10:49:11 +08:00
MNN_ASSERT(1 == outputs.size());
2023-03-20 11:32:29 +08:00
if (inputs.size() == 2) {
// copy dims
auto &input = inputs[0]->buffer();
auto &output = outputs[0]->buffer();
memcpy(output.dim, input.dim, sizeof(halide_dimension_t) * input.dimensions);
output.type = halide_type_of<float>();
// width & height
auto roi = op->main_as_RoiParameters();
output.dim[3].extent = roi->pooledWidth();
output.dim[2].extent = roi->pooledHeight();
output.dim[0].extent = inputs[1]->batch();
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
}
// backward mode, third input is backward diff, output is the grad of inputs[0]
if (inputs.size() == 3) {
TensorUtils::copyShape(inputs[0], outputs[0], true);
outputs[0]->buffer().type = inputs[0]->getType();
}
2019-04-17 10:49:11 +08:00
return true;
}
};
REGISTER_SHAPE(ROIPoolingComputer, OpType_ROIPooling);
} // namespace MNN