2019-04-17 10:49:11 +08:00
|
|
|
//
|
|
|
|
// ShapeTopKV2.cpp
|
|
|
|
// MNN
|
|
|
|
//
|
|
|
|
// Created by MNN on 2019/01/10.
|
|
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
|
|
//
|
|
|
|
|
2020-11-05 16:41:56 +08:00
|
|
|
#include "shape/SizeComputer.hpp"
|
2019-12-27 22:16:57 +08:00
|
|
|
#include "core/Macro.h"
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
namespace MNN {
|
|
|
|
|
|
|
|
class TopKV2SizeComputer : public SizeComputer {
|
|
|
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
|
|
|
const std::vector<Tensor*>& outputs) const override {
|
2022-01-04 10:50:40 +08:00
|
|
|
MNN_ASSERT(2 == inputs.size() || 3 == inputs.size());
|
2019-04-17 10:49:11 +08:00
|
|
|
MNN_ASSERT(2 == outputs.size());
|
|
|
|
auto input = inputs[0];
|
|
|
|
auto kTensor = inputs[1];
|
2022-01-04 10:50:40 +08:00
|
|
|
MNN_ASSERT(kTensor->elementSize() == 1); // Scalar
|
2019-04-17 10:49:11 +08:00
|
|
|
MNN_ASSERT(kTensor->getType().code == halide_type_int);
|
|
|
|
const int k = kTensor->host<int32_t>()[0];
|
|
|
|
const int inputDimension = input->buffer().dimensions;
|
2022-06-24 18:30:05 +08:00
|
|
|
int axis = (inputs.size() == 3 ? inputs[2]->host<int32_t>()[0] : inputDimension - 1);
|
|
|
|
if (axis < 0) axis += input->dimensions();
|
2019-04-17 10:49:11 +08:00
|
|
|
// outputs: 0 --> data, 1 --> index
|
|
|
|
|
|
|
|
auto outputData = outputs[0];
|
|
|
|
outputData->buffer().dimensions = inputDimension;
|
|
|
|
memcpy(outputData->buffer().dim, input->buffer().dim, inputDimension * sizeof(halide_dimension_t));
|
2022-01-04 10:50:40 +08:00
|
|
|
outputData->buffer().dim[axis].extent = k;
|
2019-04-17 10:49:11 +08:00
|
|
|
outputData->buffer().type = input->buffer().type;
|
|
|
|
|
|
|
|
auto outputIndices = outputs[1];
|
|
|
|
outputIndices->buffer().dimensions = inputDimension;
|
|
|
|
memcpy(outputIndices->buffer().dim, input->buffer().dim, inputDimension * sizeof(halide_dimension_t));
|
2022-01-04 10:50:40 +08:00
|
|
|
outputIndices->buffer().dim[axis].extent = k;
|
2019-04-17 10:49:11 +08:00
|
|
|
outputIndices->setType(MNN::DataType_DT_INT32);
|
2019-08-22 20:13:46 +08:00
|
|
|
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
|
|
|
TensorUtils::getDescribe(outputs[1])->dimensionFormat = TensorUtils::getDescribe(inputs[1])->dimensionFormat;
|
2019-04-17 10:49:11 +08:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2023-09-05 16:00:46 +08:00
|
|
|
REGISTER_SHAPE_INPUTS(TopKV2SizeComputer, OpType_TopKV2, (std::vector<int>{1,2}));
|
2019-04-17 10:49:11 +08:00
|
|
|
} // namespace MNN
|