MNN/source/backend/opencl/execution/buffer/ConvBufWinograd.cpp

391 lines
16 KiB
C++
Raw Normal View History

//
// ConvBufWinograd.cpp
// MNN
//
// Created by MNN on 2019/01/08.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifndef MNN_OPENCL_BUFFER_CLOSED
#include "backend/opencl/execution/buffer/ConvBufWinograd.hpp"
#include "core/Backend.hpp"
#include "core/ConvolutionCommon.hpp"
#include "math/WingoradGenerater.hpp"
#include "backend/opencl/core/OpenCLRunningUtils.hpp"
#define UNIT 2
#define INTERP 1
namespace MNN {
namespace OpenCL {
2023-03-20 11:32:29 +08:00
bool ConvBufWinograd::valid(const Convolution2DCommon* common, const Tensor* input, const Tensor* output, int limit) {
if (common->strideX() != 1 || common->strideY() != 1) {
return false;
}
if (common->dilateX() != 1 || common->dilateY() != 1) {
return false;
}
2023-03-20 11:32:29 +08:00
if(common->kernelX() != 3 || common->kernelY() != 3){
return false;
}
2023-03-20 11:32:29 +08:00
if (output->channel() > 512) {
return false;
}
const int input_channel_limit = output->channel() <= 64 ? 1024 : 512;
if(input->channel() < 32 || input->channel() > input_channel_limit){
return false;
}
return (input->width() <= 16 && input->height() <= 16);
}
ConvBufWinograd::ConvBufWinograd(const MNN::Convolution2D* op, Backend* backend) : Execution(backend) {
mOpenCLBackend = static_cast<OpenCLBackend*>(backend);
mCommon = op->common();
MNN_ASSERT((3 == mCommon->kernelY() && 3 == mCommon->kernelX()));
MNN_ASSERT(1 == mCommon->strideX() && 1 == mCommon->strideY());
MNN_ASSERT(1 == mCommon->dilateX() && 1 == mCommon->dilateY());
auto runTime = mOpenCLBackend->getOpenCLRuntime();
int ky = mCommon->kernelY();
int kx = mCommon->kernelX();
int weightSize = 0;
const float* filterDataPtr = nullptr;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
ConvolutionCommon::getConvParameters(&quanCommon, op, &filterDataPtr, &weightSize);
int oc = mCommon->outputCount();
int ic = weightSize / oc / mCommon->kernelX() / mCommon->kernelY();
auto ocC4 = UP_DIV(oc, 4);
auto icC4 = UP_DIV(ic, 4);
auto queue = runTime->commandQueue();
auto imageChannelType = CL_HALF_FLOAT;
if (mOpenCLBackend->getPrecision() == BackendConfig::Precision_High) {
imageChannelType = CL_FLOAT;
}
// Create Buffer Object
{
cl_int ret_code;
size_t bias_element = ALIGN_UP4(oc);
size_t buffer_size;
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
buffer_size = bias_element * sizeof(half_float::half);
} else {
buffer_size = bias_element * sizeof(float);
}
mBias.reset(Tensor::createDevice<float>({1, 1, 1, (int)ALIGN_UP4(oc)}));
mOpenCLBackend->onAcquireBuffer(mBias.get(), Backend::STATIC);
cl::Buffer &bias_buffer = *(cl::Buffer *)mBias->buffer().device;
auto bias_ptr = queue.enqueueMapBuffer(bias_buffer, CL_TRUE, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &ret_code);
if(bias_ptr == nullptr || ret_code) {
MNN_ERROR("clBuffer map error!\n");
}
::memset(bias_ptr, 0, buffer_size);
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
for(int i=0; i<oc; i++) {
((half_float::half *)bias_ptr)[i] = (half_float::half)op->bias()->data()[i];
}
} else {
::memcpy(bias_ptr, op->bias()->data(), oc*sizeof(float));
}
queue.enqueueUnmapMemObject(bias_buffer, bias_ptr);
std::shared_ptr<Tensor> sourceWeight(
Tensor::create<float>(std::vector<int>{oc, ic, ky, kx}, (void*)(filterDataPtr), Tensor::CAFFE));
int unit = UNIT;
int kernelSize = kx;
Math::WinogradGenerater generator(unit, kernelSize, INTERP);
int alpha = unit + kernelSize - 1;
auto weightDest = generator.allocTransformWeight(sourceWeight.get());
generator.transformWeight(weightDest.get(), sourceWeight.get());
auto weightDestSize = weightDest->size();
buffer_size = weightDest->elementSize();
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()) {
buffer_size *= sizeof(half_float::half);
} else {
buffer_size *= sizeof(float);
}
mWeight.reset(Tensor::createDevice<float>({1, ocC4 * alpha * alpha, icC4 * 4, 4}));//NHWC
mOpenCLBackend->onAcquireBuffer(mWeight.get(), Backend::STATIC);
cl::Buffer &weightBuffer = *(cl::Buffer *)mWeight->buffer().device;
auto weight_ptr = queue.enqueueMapBuffer(weightBuffer, CL_TRUE, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &ret_code);
if(weight_ptr != nullptr && ret_code == CL_SUCCESS){
if(mOpenCLBackend->getOpenCLRuntime()->isSupportedFP16()){
for(int i=0; i<weightDest->elementSize(); i++) {
((half_float::half*)weight_ptr)[i] = (half_float::half)(weightDest->host<float>()[i]);
}
}else{
::memcpy(weight_ptr, weightDest->host<float>(), buffer_size);
}
} else{
MNN_ERROR("Map error weightPtr == nullptr \n");
}
queue.enqueueUnmapMemObject(weightBuffer, weight_ptr);
}
}
ConvBufWinograd::~ConvBufWinograd() {
mOpenCLBackend->onReleaseBuffer(mWeight.get(), Backend::STATIC);
mOpenCLBackend->onReleaseBuffer(mBias.get(), Backend::STATIC);
}
ErrorCode ConvBufWinograd::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
mKernelX = mCommon->kernelX();
mKernelY = mCommon->kernelY();
mStrideX = mCommon->strideX();
mStrideY = mCommon->strideY();
int alpha = mKernelX + UNIT - 1;
auto wUnit = UP_DIV(output->width(), UNIT);
auto hUnit = UP_DIV(output->height(), UNIT);
auto pad = ConvolutionCommon::convolutionPad(input, output, mCommon);
int padY = pad.second;
int padX = pad.first;
auto runTime = mOpenCLBackend->getOpenCLRuntime();
mSource.reset(Tensor::createDevice<float>(
std::vector<int>{alpha * alpha, input->channel(), ROUND_UP(UP_DIV(wUnit * hUnit, 4), 2), 4}, Tensor::CAFFE_C4));
mDest.reset(Tensor::createDevice<float>(
std::vector<int>{4, wUnit * hUnit, UP_DIV(output->channel(), 4), alpha * alpha}, Tensor::CAFFE_C4));
mOpenCLBackend->onAcquireBuffer(mSource.get(), Backend::DYNAMIC);
mOpenCLBackend->onAcquireBuffer(mDest.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mSource.get(), Backend::DYNAMIC);
mOpenCLBackend->onReleaseBuffer(mDest.get(), Backend::DYNAMIC);
auto icC4 = UP_DIV(input->channel(), 4);
auto ocC4 = UP_DIV(output->channel(), 4);
uint32_t total_num = input->batch();
mSourceTransform.resize(total_num);
mMatMul.resize(total_num);
mDestTransform.resize(total_num);
mMaxWGS_S.resize(total_num);
mMaxWGS_D.resize(total_num);
mMaxWGS_M.resize(total_num);
std::set<std::string> basic;
/*Create Kernel*/
for(int i = 0; i < total_num; i++) {
char format[20];
::memset(format, 0, sizeof(format));
sprintf(format, "%d_%d_%d", UNIT, mKernelX, INTERP);
auto formatStr = std::string(format);
mSourceTransform[i] =
runTime->buildKernel("winogradTransform_buf",
"winoTransSrcBuf" + formatStr, basic);
mMaxWGS_S[i] = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mSourceTransform[i]));
{
std::set<std::string> buildOptions = basic;
if (mCommon->relu()) {
buildOptions.emplace("-DRELU");
}
if (mCommon->relu6()) {
buildOptions.emplace("-DRELU6");
}
mDestTransform[i] =
runTime->buildKernel("winogradTransform_buf",
"winoTransDstBuf" + formatStr, buildOptions);
mMaxWGS_D[i] = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(mDestTransform[i]));
}
}
mGWS_S.resize(total_num);
mGWS_D.resize(total_num);
mGWS_M.resize(total_num);
mLWS_S.resize(total_num);
mLWS_D.resize(total_num);
mLWS_M.resize(total_num);
for (int b = 0; b < input->batch(); ++b) {
int hCount = hUnit;
int wCount = wUnit;
// Source Transform
{
mGWS_S[b] = {static_cast<uint32_t>(wCount * hCount), static_cast<uint32_t>(icC4)};
int index = 0;
mSourceTransform[b].setArg(index++, mGWS_S[b][0]);
mSourceTransform[b].setArg(index++, mGWS_S[b][1]);
mSourceTransform[b].setArg(index++, openCLBuffer(input));
mSourceTransform[b].setArg(index++, openCLBuffer(mSource.get()));
mSourceTransform[b].setArg(index++, wCount);
mSourceTransform[b].setArg(index++, hCount);
mSourceTransform[b].setArg(index++, padX);
mSourceTransform[b].setArg(index++, padY);
mSourceTransform[b].setArg(index++, input->width());
mSourceTransform[b].setArg(index++, input->height());
mSourceTransform[b].setArg(index++, icC4);
mSourceTransform[b].setArg(index++, b);
std::string kernelName = "winoTransSrcBuf";
mLWS_S[b] = localWS2DDefault(mGWS_S[b], mMaxWGS_S[b], mOpenCLBackend->getOpenCLRuntime(), kernelName, mSourceTransform[b]).first;
}
// MatMul
{
auto gemmHeight = ocC4;
auto gemmWidth = UP_DIV(wCount * hCount, 4);
const int total_kernel = 2;
const std::string kernelName[total_kernel] = {"gemm_buf", "gemm_buf2"};
int itemW[total_kernel] = {1, 2};
int actual_kernel = total_kernel;
if(mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Normal || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == Fast || mOpenCLBackend->getOpenCLRuntime()->getCLTuneLevel() == None) {
actual_kernel = 1;
}
cl::Kernel kernel[total_kernel];
std::vector<uint32_t> globalWorkSize[total_kernel];
std::vector<uint32_t> localWorkSize[total_kernel];
std::pair<uint32_t, int> min_cost(UINT_MAX, 0);//(min_time, min_index)
for(int knl_idx = 0; knl_idx < actual_kernel; knl_idx++) {
kernel[knl_idx] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_buf", kernelName[knl_idx], basic);
uint32_t maxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(kernel[knl_idx]));
globalWorkSize[knl_idx] = {static_cast<uint32_t>(UP_DIV(gemmWidth, itemW[knl_idx])*gemmHeight), static_cast<uint32_t>(alpha * alpha)};
uint32_t index = 0;
kernel[knl_idx].setArg(index++, globalWorkSize[knl_idx][0]);
kernel[knl_idx].setArg(index++, globalWorkSize[knl_idx][1]);
kernel[knl_idx].setArg(index++, openCLBuffer(mSource.get()));
kernel[knl_idx].setArg(index++, openCLBuffer(mWeight.get()));
kernel[knl_idx].setArg(index++, openCLBuffer(mDest.get()));
kernel[knl_idx].setArg(index++, gemmWidth);
kernel[knl_idx].setArg(index++, gemmHeight);
kernel[knl_idx].setArg(index++, icC4);
kernel[knl_idx].setArg(index++, alpha*alpha);
std::pair<std::vector<uint32_t>, uint32_t> retTune;
retTune = localWS2DDefault(globalWorkSize[knl_idx], maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), kernelName[knl_idx], kernel[knl_idx]);
//printf("gemm %d, %d\n", knl_idx, retTune.second);
if(min_cost.first > retTune.second) {
min_cost.first = retTune.second;
min_cost.second = knl_idx;
mLWS_M[b] = {retTune.first[0], retTune.first[1]};
}
}
int min_index = min_cost.second;
//mKernel = kernel[min_index];
mGWS_M[b] = {globalWorkSize[min_index][0], globalWorkSize[min_index][1]};
mMatMul[b] = mOpenCLBackend->getOpenCLRuntime()->buildKernel("gemm_buf", kernelName[min_index], basic);
int index = 0;
mMatMul[b].setArg(index++, mGWS_M[b][0]);
mMatMul[b].setArg(index++, mGWS_M[b][1]);
mMatMul[b].setArg(index++, openCLBuffer(mSource.get()));
mMatMul[b].setArg(index++, openCLBuffer(mWeight.get()));
mMatMul[b].setArg(index++, openCLBuffer(mDest.get()));
mMatMul[b].setArg(index++, gemmWidth);
mMatMul[b].setArg(index++, gemmHeight);
mMatMul[b].setArg(index++, icC4);
mMatMul[b].setArg(index++, alpha*alpha);
}
// Dest Transform
{
mGWS_D[b] = {static_cast<uint32_t>(wCount*hCount), static_cast<uint32_t>(ocC4)};
int index = 0;
mDestTransform[b].setArg(index++, mGWS_D[b][0]);
mDestTransform[b].setArg(index++, mGWS_D[b][1]);
mDestTransform[b].setArg(index++, openCLBuffer(mDest.get()));
mDestTransform[b].setArg(index++, openCLBuffer(mBias.get()));
mDestTransform[b].setArg(index++, openCLBuffer(output));
mDestTransform[b].setArg(index++, wCount);
mDestTransform[b].setArg(index++, hCount);
mDestTransform[b].setArg(index++, output->width());
mDestTransform[b].setArg(index++, output->height());
mDestTransform[b].setArg(index++, ocC4);
mDestTransform[b].setArg(index++, b);
std::string kernelName = "winoTransDstBuf";
mLWS_D[b] = localWS2DDefault(mGWS_D[b], mMaxWGS_D[b], mOpenCLBackend->getOpenCLRuntime(), kernelName, mDestTransform[b]).first;
}
}
return NO_ERROR;
}
ErrorCode ConvBufWinograd::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
auto input = inputs[0];
auto output = outputs[0];
#ifdef ENABLE_OPENCL_TIME_PROFILER
int costTime = 0;
#endif
for (int b = 0; b < input->batch(); ++b) {
int index = b;
/*Source Transform*/
{
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mSourceTransform[index], mGWS_S[index], mLWS_S[index],
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime0 = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
costTime += costTime0;
MNN_PRINT("kernel cost:%d us ConvWino0\n",costTime0);
#else
runKernel2D(mSourceTransform[index], mGWS_S[index], mLWS_S[index],
mOpenCLBackend->getOpenCLRuntime());
#endif
}
/*MatMul*/
{
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mMatMul[index], mGWS_M[index], mLWS_M[index],
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime1 = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
costTime += costTime1;
MNN_PRINT("kernel cost:%d us ConvWino1\n",costTime1);
#else
runKernel2D(mMatMul[index], mGWS_M[index], mLWS_M[index],
mOpenCLBackend->getOpenCLRuntime());
#endif
}
// Dest Transform
{
#ifdef ENABLE_OPENCL_TIME_PROFILER
cl::Event event;
runKernel2D(mDestTransform[index], mGWS_D[index], mLWS_D[index],
mOpenCLBackend->getOpenCLRuntime(), &event);
int costTime2 = (int)mOpenCLBackend->getOpenCLRuntime()->getCostTime(&event);
costTime += costTime2;
MNN_PRINT("kernel cost:%d us ConvWino2\n",costTime2);
#else
runKernel2D(mDestTransform[index], mGWS_D[index], mLWS_D[index],
mOpenCLBackend->getOpenCLRuntime());
#endif
}
}
#ifdef ENABLE_OPENCL_TIME_PROFILER
MNN_PRINT("kernel cost:%d us ConvWino total\n",costTime);
#endif
return NO_ERROR;
}
} // namespace OpenCL
} // namespace MNN
#endif /* MNN_OPENCL_BUFFER_CLOSED */