MNN/source/backend/cpu/CPUConvolution.cpp

88 lines
3.0 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUConvolution.cpp
// MNN
//
// Created by MNN on 2018/07/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUConvolution.hpp"
#include <math.h>
#include "CPUBackend.hpp"
#include "CommonOptFunction.h"
#include "Macro.h"
#include "compute/ConvolutionFloatFactory.h"
namespace MNN {
CPUConvolution::CPUConvolution(const Convolution2DCommon *convOp, Backend *b) : MNN::Execution(b), mCommon(convOp) {
mPostFunction = getPostFunction();
}
int CPUConvolution::reorderWeightSize(int depth, int outputCount, int kernelSize, int unit) {
int unit2 = unit * unit;
return UP_DIV(outputCount, unit) * UP_DIV(depth, unit) * kernelSize * unit2;
}
void CPUConvolution::reorderWeight(float *dest, const float *source, int depth, int outputCount, int kernelSize,
int unit) {
int unit2 = unit * unit;
int alignedWeightSize = UP_DIV(outputCount, unit) * UP_DIV(depth, unit) * kernelSize * unit2;
int cur = 0;
int batch_4 = ALIGN_UP4(outputCount) / unit;
for (int b = 0; b < outputCount; ++b) {
int b_4 = b / unit;
float *dst_b = dest + b_4 * (alignedWeightSize / batch_4);
int mx = b % unit;
for (int d = 0; d < depth; ++d) {
int my = d % unit;
int d_4 = d / unit;
float *dst_d = dst_b + d_4 * kernelSize * unit2;
for (int y = 0; y < kernelSize; ++y) {
float *dst_y = dst_d + y * unit2;
dst_y[unit * my + mx] = source[cur++];
}
}
}
}
ErrorCode CPUConvolution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
if (mCommon->padMode() == PadMode_SAME) {
int kernelWidthSize = (mCommon->kernelX() - 1) * mCommon->dilateX() + 1;
int kernelHeightSize = (mCommon->kernelY() - 1) * mCommon->dilateY() + 1;
int padNeededWidth = (output->width() - 1) * mCommon->strideX() + kernelWidthSize - input->width();
int padNeededHeight = (output->height() - 1) * mCommon->strideY() + kernelHeightSize - input->height();
mPadX = padNeededWidth / 2;
mPadY = padNeededHeight / 2;
return NO_ERROR;
}
mPadX = mCommon->padX();
mPadY = mCommon->padY();
return NO_ERROR;
}
CPUConvolution::POSTFUNCTION CPUConvolution::getPostFunction() const {
if (mCommon->relu()) {
return MNNAddBiasRelu;
}
if (mCommon->relu6()) {
return MNNAddBiasRelu6;
}
return MNNAddBias;
}
class ConvolutionFactory : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return ConvolutionFloatFactory::create(inputs, outputs, op, backend);
}
};
REGISTER_CPU_OP_CREATOR(ConvolutionFactory, OpType_Convolution);
} // namespace MNN