MNN/source/backend/cpu/CPUUnary.cpp

134 lines
3.3 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// CPUUnary.cpp
// MNN
//
// Created by MNN on 2018/08/02.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "CPUUnary.hpp"
#include <cmath>
#include "CPUBackend.hpp"
#include "Macro.h"
namespace MNN {
CPUUnary::CPUUnary(Backend *b, UnaryOpOperation type) : MNN::Execution(b), mType(type) {
// nothing to do
}
ErrorCode CPUUnary::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
MNN_ASSERT(1 == outputs.size());
// we only support floats now
MNN_ASSERT(inputs[0]->buffer().type.code == halide_type_float && inputs[0]->buffer().type.bits == 32);
return NO_ERROR;
}
template <typename Func>
static ErrorCode _unaryOp(Tensor *input, Tensor *output) {
Func f;
const float *inputData = input->host<float>();
float *outputData = (float *)output->buffer().host;
auto elementSize = input->elementSize();
for (int i = 0; i < elementSize; i++) {
outputData[i] = f(inputData[i]);
}
return NO_ERROR;
}
template <typename T>
struct UnarySquare : std::unary_function<T, T> {
T operator()(const T &x) const {
return x * x;
}
};
template <typename T>
struct UnaryRsqrt : std::unary_function<T, T> {
T operator()(const T &x) const {
return 1.f / sqrt(x);
}
};
template <typename T>
struct UnarySqrt : std::unary_function<T, T> {
T operator()(const T &x) const {
return sqrt(x);
}
};
template <typename T>
struct UnaryNeg {
T operator()(const T &x) const {
return -x;
}
};
template <typename T>
struct UnaryExp : std::unary_function<T, T> {
T operator()(const T &x) const {
return std::exp(x);
}
};
template <typename T>
struct UnaryAbs : std::unary_function<T, T> {
T operator()(const T &x) const {
return std::abs(x);
}
};
template <typename T>
struct UnaryCeil : std::unary_function<T, T> {
T operator()(const T &x) const {
return std::ceil(x);
}
};
ErrorCode CPUUnary::onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
auto input = inputs[0];
auto output = outputs[0];
switch (mType) {
case UnaryOpOperation_SQUARE:
return _unaryOp<UnarySquare<float>>(input, output);
case UnaryOpOperation_RSQRT:
return _unaryOp<UnaryRsqrt<float>>(input, output);
case UnaryOpOperation_NEG:
return _unaryOp<UnaryNeg<float>>(input, output);
case UnaryOpOperation_EXP:
return _unaryOp<UnaryExp<float>>(input, output);
case UnaryOpOperation_SQRT:
return _unaryOp<UnarySqrt<float>>(input, output);
case UnaryOpOperation_ABS:
return _unaryOp<UnaryAbs<float>>(input, output);
case UnaryOpOperation_CEIL:
return _unaryOp<UnaryCeil<float>>(input, output);
default:
MNN_ASSERT(false);
break;
}
return NO_ERROR;
}
class CPUUnaryCreator : public CPUBackend::Creator {
public:
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
return new CPUUnary(backend, op->main_as_UnaryOp()->opType());
}
};
REGISTER_CPU_OP_CREATOR(CPUUnaryCreator, OpType_UnaryOp);
} // namespace MNN