MNN/source/backend/cpu/compute/StrassenMatmulComputor.cpp

551 lines
21 KiB
C++
Raw Normal View History

2019-04-17 10:49:11 +08:00
//
// StrassenMatmulComputor.cpp
// MNN
//
// Created by MNN on 2019/02/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "StrassenMatmulComputor.hpp"
#include <string.h>
#include "ConvOpt.h"
#include "Macro.h"
//#define MNN_OPEN_TIME_TRACE
#include "AutoTime.hpp"
extern "C" {
void MNNStrassenMergeCFunction(float* c11, float* c12, float* c21, float* c22, float* xAddr, size_t cStride,
size_t eSub, size_t hSub);
}
#ifndef MNN_USE_NEON
void MNNStrassenMergeCFunction(float* c11, float* c12, float* c21, float* c22, float* xAddr, size_t cStride,
size_t eSub, size_t hSub) {
MNNMatrixAdd(c12, c12, xAddr, eSub, cStride, cStride, eSub * 4, hSub);
MNNMatrixAdd(c21, c12, c21, eSub, cStride, cStride, cStride, hSub);
MNNMatrixAdd(c12, c22, c12, eSub, cStride, cStride, cStride, hSub);
MNNMatrixAdd(c22, c22, c21, eSub, cStride, cStride, cStride, hSub);
MNNMatrixAdd(c12, c11, c12, eSub, cStride, cStride, cStride, hSub);
}
#endif
namespace MNN {
typedef std::shared_ptr<Tensor> PTensor;
class StrassenMatrixComputor::AddTensor {
public:
AddTensor(Tensor* t, Backend* bn, Backend::StorageType storageType = Backend::DYNAMIC) {
mTensor.reset(t);
mValid = bn->onAcquireBuffer(t, storageType);
mBackend = bn;
mStorageType = storageType;
}
inline bool valid() const {
return mValid;
}
~AddTensor() {
mBackend->onReleaseBuffer(mTensor.get(), mStorageType);
}
const Tensor* operator->() const {
return mTensor.get();
}
const Tensor* get() const {
return mTensor.get();
}
private:
std::shared_ptr<Tensor> mTensor;
Backend* mBackend;
bool mValid = false;
Backend::StorageType mStorageType;
};
StrassenMatrixComputor::StrassenMatrixComputor(Backend* bn, int maxDepth, bool cacheB) : Execution(bn) {
mMaxDepth = maxDepth;
mCacheB = cacheB;
};
StrassenMatrixComputor::~StrassenMatrixComputor() {
// Do nothing
}
static void _matrixCopy(float* C, const float* A, size_t widthC4, size_t cStride, size_t aStride, size_t height) {
auto lineBytes = widthC4 * 4 * sizeof(float);
for (int y = 0; y < height; ++y) {
auto a = A + aStride * y;
auto c = C + cStride * y;
::memcpy(c, a, lineBytes);
}
}
ErrorCode StrassenMatrixComputor::_generateTrivalMatMul(const Tensor* AT, const Tensor* BT, const Tensor* CT) {
// Generate Trival Matrix Multiply
auto l = AT->length(0);
auto e = AT->length(1);
auto h = BT->length(0);
auto aHost = AT->host<float>();
auto bHost = BT->host<float>();
auto cHost = CT->host<float>();
auto aStride = AT->stride(0);
auto bStride = BT->stride(0);
auto cStride = CT->stride(0);
auto bExtraStride = bStride - BT->length(1) * BT->length(2);
std::shared_ptr<AddTensor> bCopy;
if (mCacheB) {
bCopy.reset(new AddTensor(Tensor::createDevice<float>(BT->shape()), backend(), Backend::STATIC));
// The only way to add extra const tensor
mConstTensor.emplace_back(bCopy);
auto tempHost = bCopy->get()->host<float>();
_matrixCopy(tempHost, bHost, l * 4, l * 16, bStride, h);
;
bHost = tempHost;
bExtraStride = 0;
}
if (e > CONVOLUTION_TILED_NUMBWR && h >= 4 && l >= 4) {
AddTensor tileBuffer(Tensor::createDevice<float>(std::vector<int>{l, CONVOLUTION_TILED_NUMBWR, 4}), backend());
auto tileHost = tileBuffer->host<float>();
int unitNumber = e / CONVOLUTION_TILED_NUMBWR;
int xCount = e - unitNumber * CONVOLUTION_TILED_NUMBWR;
mFunctions.emplace_back(
[xCount, aHost, bHost, cHost, l, e, h, cStride, aStride, tileHost, unitNumber, bExtraStride]() {
for (int i = 0; i < unitNumber; ++i) {
int xStart = i * CONVOLUTION_TILED_NUMBWR;
int lineCount = CONVOLUTION_TILED_NUMBWR1x1 * 4;
auto aStart = aHost + xStart * 4;
_matrixCopy(tileHost, aStart, CONVOLUTION_TILED_NUMBWR1x1, lineCount, aStride, l);
MNNGemmFloatUnit_4(cHost + 4 * xStart, tileHost, bHost, l, cStride, h, bExtraStride);
}
if (xCount > 0) {
int xStart = unitNumber * CONVOLUTION_TILED_NUMBWR;
int lineCount = xCount * 4;
auto aStart = aHost + xStart * 4;
// Copy
_matrixCopy(tileHost, aStart, xCount, lineCount, aStride, l);
if (1 == xCount) {
MNNGemmFloatOne_4(cHost + 4 * xStart, tileHost, bHost, l, cStride, h, bExtraStride);
} else {
MNNGemmFloatCommon_4(cHost + 4 * xStart, tileHost, bHost, l, cStride, h, xCount, bExtraStride);
}
}
});
return NO_ERROR;
}
std::shared_ptr<AddTensor> aCopy;
if (AT->length(1) * AT->length(2) != aStride) {
aCopy.reset(new AddTensor(Tensor::createDevice<float>(AT->shape()), backend()));
auto tempHost = aCopy->get()->host<float>();
mFunctions.emplace_back(
[e, l, aStride, aHost, tempHost]() { _matrixCopy(tempHost, aHost, e * 4 / 4, e * 4, aStride, l); });
aHost = tempHost;
}
if (e == CONVOLUTION_TILED_NUMBWR) {
mFunctions.emplace_back([aHost, bHost, cHost, l, h, cStride, bExtraStride]() {
MNNGemmFloatUnit_4(cHost, aHost, bHost, l, cStride, h, bExtraStride);
});
} else if (e == 1) {
mFunctions.emplace_back([aHost, bHost, cHost, l, e, h, cStride, bExtraStride]() {
MNNGemmFloatOne_4(cHost, aHost, bHost, l, cStride, h, bExtraStride);
});
} else {
mFunctions.emplace_back([aHost, bHost, cHost, l, e, h, cStride, bExtraStride]() {
MNNGemmFloatCommon_4(cHost, aHost, bHost, l, cStride, h, e, bExtraStride);
});
}
return NO_ERROR;
}
ErrorCode StrassenMatrixComputor::_generateMatMulConstB(const Tensor* AT, const Tensor* BT, const Tensor* CT) {
auto l = AT->length(0);
auto e = AT->length(1);
auto h = BT->length(0);
auto eSub = e / 2;
auto lSub = l / 2;
auto hSub = h / 2;
/*
Compute the memory read / write cost for expand
Matrix Mul need eSub*lSub*hSub*(1+1.0/CONVOLUTION_TILED_NUMBWR), Matrix Add/Sub need x*y*UNIT*3 (2 read 1 write)
*/
float saveCost =
(eSub * lSub * hSub) * (1.0f + 1.0f / CONVOLUTION_TILED_NUMBWR) - 4 * (eSub * lSub) * 3 - 7 * (eSub * hSub * 3);
if (mCurrentDepth >= mMaxDepth || e <= CONVOLUTION_TILED_NUMBWR || l % 2 != 0 || h % 2 != 0 || saveCost < 0.0f) {
return _generateTrivalMatMul(AT, BT, CT);
}
// MNN_PRINT("saveCost = %f, e=%d, l=%d, h=%d\n", saveCost, e, l, h);
// Strassen Construct
auto bn = backend();
mCurrentDepth += 1;
static const int aUnit = 4;
static const int bUnit = 16;
auto AS = std::vector<int>{lSub, eSub, aUnit};
auto BS = std::vector<int>{hSub, lSub, bUnit};
auto CS = std::vector<int>{hSub, eSub, aUnit};
auto ACS = AS;
if (CS[0] > ACS[0]) {
ACS[0] = CS[0];
}
// Use XReal to contain both AX and CX, that's two cache
AddTensor XReal(Tensor::createDevice<float>(ACS), bn);
AddTensor Y(Tensor::createDevice<float>(BS), bn, Backend::STATIC);
if (!XReal.valid() || !Y.valid()) {
return OUT_OF_MEMORY;
}
PTensor X(Tensor::create<float>(AS, XReal->host<float>()));
PTensor CX(Tensor::create<float>(CS, XReal->host<float>()));
auto xAddr = X->host<float>();
auto yAddr = Y->host<float>();
auto aStride = AT->stride(0);
auto a11 = AT->host<float>() + 0 * aUnit * eSub + 0 * aStride * lSub;
auto a12 = AT->host<float>() + 0 * aUnit * eSub + 1 * aStride * lSub;
auto a21 = AT->host<float>() + 1 * aUnit * eSub + 0 * aStride * lSub;
auto a22 = AT->host<float>() + 1 * aUnit * eSub + 1 * aStride * lSub;
auto bStride = BT->stride(0);
auto b11 = BT->host<float>() + 0 * bUnit * lSub + 0 * bStride * hSub;
auto b12 = BT->host<float>() + 0 * bUnit * lSub + 1 * bStride * hSub;
auto b21 = BT->host<float>() + 1 * bUnit * lSub + 0 * bStride * hSub;
auto b22 = BT->host<float>() + 1 * bUnit * lSub + 1 * bStride * hSub;
auto cStride = CT->stride(0);
auto c11 = CT->host<float>() + 0 * aUnit * eSub + 0 * cStride * hSub;
auto c12 = CT->host<float>() + 0 * aUnit * eSub + 1 * cStride * hSub;
auto c21 = CT->host<float>() + 1 * aUnit * eSub + 0 * cStride * hSub;
auto c22 = CT->host<float>() + 1 * aUnit * eSub + 1 * cStride * hSub;
PTensor A11(Tensor::create<float>(AS, a11));
A11->setStride(0, aStride);
PTensor A12(Tensor::create<float>(AS, a12));
A12->setStride(0, aStride);
PTensor A21(Tensor::create<float>(AS, a21));
A21->setStride(0, aStride);
PTensor A22(Tensor::create<float>(AS, a22));
A22->setStride(0, aStride);
PTensor B11(Tensor::create<float>(BS, b11));
B11->setStride(0, bStride);
PTensor B12(Tensor::create<float>(BS, b12));
B12->setStride(0, bStride);
PTensor B21(Tensor::create<float>(BS, b21));
B21->setStride(0, bStride);
PTensor B22(Tensor::create<float>(BS, b22));
B22->setStride(0, bStride);
PTensor C11(Tensor::create<float>(CS, c11));
C11->setStride(0, cStride);
PTensor C12(Tensor::create<float>(CS, c12));
C12->setStride(0, cStride);
PTensor C21(Tensor::create<float>(CS, c21));
C21->setStride(0, cStride);
PTensor C22(Tensor::create<float>(CS, c22));
C22->setStride(0, cStride);
{
// S3=A11-A21, T3=B22-B12, P7=S3*T3
MNNMatrixSub(yAddr, b22, b12, lSub * bUnit / 4, lSub * bUnit, bStride, bStride, hSub);
auto f = [a11, a21, xAddr, eSub, lSub, hSub, aStride]() {
MNNMatrixSub(xAddr, a11, a21, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMulConstB(X.get(), Y.get(), C21.get());
if (code != NO_ERROR) {
return code;
}
}
{
// S1=A21+A22, T1=B12-B11, P5=S1T1
MNNMatrixSub(yAddr, b12, b11, lSub * bUnit / 4, lSub * bUnit, bStride, bStride, hSub);
auto f = [a22, a21, b11, b12, xAddr, eSub, lSub, hSub, aStride]() {
MNNMatrixAdd(xAddr, a21, a22, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMulConstB(X.get(), Y.get(), C22.get());
if (code != NO_ERROR) {
return code;
}
}
{
// S2=S1-A11, T2=B22-T1, P6=S2T2
MNNMatrixSub(yAddr, b22, yAddr, lSub * bUnit / 4, lSub * bUnit, bStride, lSub * bUnit, hSub);
auto f = [a11, b22, xAddr, eSub, lSub, hSub, aStride]() {
MNNMatrixSub(xAddr, xAddr, a11, eSub * aUnit / 4, eSub * aUnit, eSub * aUnit, aStride, lSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMulConstB(X.get(), Y.get(), C12.get());
if (code != NO_ERROR) {
return code;
}
}
{
// S4=A12-S2, P3=S4*B22, P1=A11*B11
auto f = [a12, xAddr, eSub, lSub, aStride]() {
MNNMatrixSub(xAddr, a12, xAddr, eSub * aUnit / 4, eSub * aUnit, aStride, eSub * aUnit, lSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMulConstB(X.get(), B22.get(), C11.get());
if (code != NO_ERROR) {
return code;
}
code = _generateMatMulConstB(A11.get(), B11.get(), CX.get());
if (code != NO_ERROR) {
return code;
}
}
{
// U2=P1+P6, U3=U2+P7, U4=U2+P5, U7=U3+P5
// U5=U4+P3, T4=T2-B21, P4=A22*T4
MNNMatrixSub(yAddr, yAddr, b21, lSub * bUnit / 4, lSub * bUnit, lSub * bUnit, bStride, hSub);
auto f = [c11, c12, c21, c22, b21, xAddr, yAddr, eSub, lSub, hSub, bStride, cStride]() {
MNNStrassenMergeCFunction(c11, c12, c21, c22, xAddr, cStride, eSub, hSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMulConstB(A22.get(), Y.get(), C11.get());
if (code != NO_ERROR) {
return code;
}
}
{
// U6=U3-P4, P2=A12*B21, U1=P1+P2
auto f0 = [c11, c21, eSub, hSub, cStride]() {
auto cw = eSub * aUnit / 4;
MNNMatrixSub(c21, c21, c11, cw, cStride, cStride, cStride, hSub);
};
mFunctions.emplace_back(f0);
auto code = _generateMatMulConstB(A12.get(), B21.get(), C11.get());
if (code != NO_ERROR) {
return code;
}
auto f1 = [c11, xAddr, eSub, hSub, cStride]() {
auto cw = eSub * aUnit / 4;
MNNMatrixAdd(c11, c11, xAddr, cw, cStride, cStride, eSub * aUnit, hSub);
};
mFunctions.emplace_back(f1);
}
if (e % 2 != 0) {
auto aLast = AT->host<float>() + eSub * 2 * aUnit;
auto cLast = CT->host<float>() + eSub * 2 * aUnit;
PTensor ALast(Tensor::create<float>(std::vector<int>{l, 1, aUnit}, aLast));
PTensor CLast(Tensor::create<float>(std::vector<int>{h, 1, aUnit}, cLast));
ALast->setStride(0, aStride);
CLast->setStride(0, cStride);
_generateMatMulConstB(ALast.get(), BT, CLast.get());
}
return NO_ERROR;
}
ErrorCode StrassenMatrixComputor::_generateMatMul(const Tensor* AT, const Tensor* BT, const Tensor* CT) {
auto l = AT->length(0);
auto e = AT->length(1);
auto h = BT->length(0);
auto eSub = e / 2;
auto lSub = l / 2;
auto hSub = h / 2;
/*
Compute the memory read / write cost for expand
Matrix Mul need eSub*lSub*hSub*(1+1.0/CONVOLUTION_TILED_NUMBWR), Matrix Add/Sub need x*y*UNIT*3 (2 read 1 write)
*/
float saveCost = (eSub * lSub * hSub) * (1.0f + 1.0f / CONVOLUTION_TILED_NUMBWR) - 4 * (eSub * lSub) * 3 -
4 * (4 * lSub * hSub * 3) - 7 * (eSub * hSub * 3);
if (mCurrentDepth >= mMaxDepth || e <= CONVOLUTION_TILED_NUMBWR || l % 2 != 0 || h % 2 != 0 || saveCost < 0.0f) {
return _generateTrivalMatMul(AT, BT, CT);
}
// MNN_PRINT("saveCost = %f, e=%d, l=%d, h=%d\n", saveCost, e, l, h);
// Strassen Construct
auto bn = backend();
mCurrentDepth += 1;
static const int aUnit = 4;
static const int bUnit = 16;
auto AS = std::vector<int>{lSub, eSub, aUnit};
auto BS = std::vector<int>{hSub, lSub, bUnit};
auto CS = std::vector<int>{hSub, eSub, aUnit};
auto ACS = AS;
if (CS[0] > ACS[0]) {
ACS[0] = CS[0];
}
// Use XReal to contain both AX and CX, that's two cache
AddTensor XReal(Tensor::createDevice<float>(ACS), bn);
AddTensor Y(Tensor::createDevice<float>(BS), bn);
if (!XReal.valid() || !Y.valid()) {
return OUT_OF_MEMORY;
}
PTensor X(Tensor::create<float>(AS, XReal->host<float>()));
PTensor CX(Tensor::create<float>(CS, XReal->host<float>()));
auto xAddr = X->host<float>();
auto yAddr = Y->host<float>();
auto aStride = AT->stride(0);
auto a11 = AT->host<float>() + 0 * aUnit * eSub + 0 * aStride * lSub;
auto a12 = AT->host<float>() + 0 * aUnit * eSub + 1 * aStride * lSub;
auto a21 = AT->host<float>() + 1 * aUnit * eSub + 0 * aStride * lSub;
auto a22 = AT->host<float>() + 1 * aUnit * eSub + 1 * aStride * lSub;
auto bStride = BT->stride(0);
auto b11 = BT->host<float>() + 0 * bUnit * lSub + 0 * bStride * hSub;
auto b12 = BT->host<float>() + 0 * bUnit * lSub + 1 * bStride * hSub;
auto b21 = BT->host<float>() + 1 * bUnit * lSub + 0 * bStride * hSub;
auto b22 = BT->host<float>() + 1 * bUnit * lSub + 1 * bStride * hSub;
auto cStride = CT->stride(0);
auto c11 = CT->host<float>() + 0 * aUnit * eSub + 0 * cStride * hSub;
auto c12 = CT->host<float>() + 0 * aUnit * eSub + 1 * cStride * hSub;
auto c21 = CT->host<float>() + 1 * aUnit * eSub + 0 * cStride * hSub;
auto c22 = CT->host<float>() + 1 * aUnit * eSub + 1 * cStride * hSub;
PTensor A11(Tensor::create<float>(AS, a11));
A11->setStride(0, aStride);
PTensor A12(Tensor::create<float>(AS, a12));
A12->setStride(0, aStride);
PTensor A21(Tensor::create<float>(AS, a21));
A21->setStride(0, aStride);
PTensor A22(Tensor::create<float>(AS, a22));
A22->setStride(0, aStride);
PTensor B11(Tensor::create<float>(BS, b11));
B11->setStride(0, bStride);
PTensor B12(Tensor::create<float>(BS, b12));
B12->setStride(0, bStride);
PTensor B21(Tensor::create<float>(BS, b21));
B21->setStride(0, bStride);
PTensor B22(Tensor::create<float>(BS, b22));
B22->setStride(0, bStride);
PTensor C11(Tensor::create<float>(CS, c11));
C11->setStride(0, cStride);
PTensor C12(Tensor::create<float>(CS, c12));
C12->setStride(0, cStride);
PTensor C21(Tensor::create<float>(CS, c21));
C21->setStride(0, cStride);
PTensor C22(Tensor::create<float>(CS, c22));
C22->setStride(0, cStride);
{
// S3=A11-A21, T3=B22-B12, P7=S3*T3
auto f = [a11, a21, b22, b12, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride]() {
MNNMatrixSub(xAddr, a11, a21, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);
MNNMatrixSub(yAddr, b22, b12, lSub * bUnit / 4, lSub * bUnit, bStride, bStride, hSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMul(X.get(), Y.get(), C21.get());
if (code != NO_ERROR) {
return code;
}
}
{
// S1=A21+A22, T1=B12-B11, P5=S1T1
auto f = [a22, a21, b11, b12, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride]() {
MNNMatrixAdd(xAddr, a21, a22, eSub * aUnit / 4, eSub * aUnit, aStride, aStride, lSub);
MNNMatrixSub(yAddr, b12, b11, lSub * bUnit / 4, lSub * bUnit, bStride, bStride, hSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMul(X.get(), Y.get(), C22.get());
if (code != NO_ERROR) {
return code;
}
}
{
// S2=S1-A11, T2=B22-T1, P6=S2T2
auto f = [a11, b22, xAddr, yAddr, eSub, lSub, hSub, aStride, bStride]() {
MNNMatrixSub(xAddr, xAddr, a11, eSub * aUnit / 4, eSub * aUnit, eSub * aUnit, aStride, lSub);
MNNMatrixSub(yAddr, b22, yAddr, lSub * bUnit / 4, lSub * bUnit, bStride, lSub * bUnit, hSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMul(X.get(), Y.get(), C12.get());
if (code != NO_ERROR) {
return code;
}
}
{
// S4=A12-S2, P3=S4*B22, P1=A11*B11
auto f = [a12, xAddr, eSub, lSub, aStride]() {
MNNMatrixSub(xAddr, a12, xAddr, eSub * aUnit / 4, eSub * aUnit, aStride, eSub * aUnit, lSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMul(X.get(), B22.get(), C11.get());
if (code != NO_ERROR) {
return code;
}
code = _generateMatMul(A11.get(), B11.get(), CX.get());
if (code != NO_ERROR) {
return code;
}
}
{
// U2=P1+P6, U3=U2+P7, U4=U2+P5, U7=U3+P5
// U5=U4+P3, T4=T2-B21, P4=A22*T4
auto f = [c11, c12, c21, c22, b21, xAddr, yAddr, eSub, lSub, hSub, bStride, cStride]() {
MNNStrassenMergeCFunction(c11, c12, c21, c22, xAddr, cStride, eSub, hSub);
MNNMatrixSub(yAddr, yAddr, b21, lSub * bUnit / 4, lSub * bUnit, lSub * bUnit, bStride, hSub);
};
mFunctions.emplace_back(f);
auto code = _generateMatMul(A22.get(), Y.get(), C11.get());
if (code != NO_ERROR) {
return code;
}
}
{
// U6=U3-P4, P2=A12*B21, U1=P1+P2
auto f0 = [c11, c21, eSub, hSub, cStride]() {
auto cw = eSub * aUnit / 4;
MNNMatrixSub(c21, c21, c11, cw, cStride, cStride, cStride, hSub);
};
mFunctions.emplace_back(f0);
auto code = _generateMatMul(A12.get(), B21.get(), C11.get());
if (code != NO_ERROR) {
return code;
}
auto f1 = [c11, xAddr, eSub, hSub, cStride]() {
auto cw = eSub * aUnit / 4;
MNNMatrixAdd(c11, c11, xAddr, cw, cStride, cStride, eSub * aUnit, hSub);
};
mFunctions.emplace_back(f1);
}
if (e % 2 != 0) {
auto aLast = AT->host<float>() + eSub * 2 * aUnit;
auto cLast = CT->host<float>() + eSub * 2 * aUnit;
PTensor ALast(Tensor::create<float>(std::vector<int>{l, 1, aUnit}, aLast));
PTensor CLast(Tensor::create<float>(std::vector<int>{h, 1, aUnit}, cLast));
ALast->setStride(0, aStride);
CLast->setStride(0, cStride);
_generateMatMul(ALast.get(), BT, CLast.get());
}
return NO_ERROR;
}
ErrorCode StrassenMatrixComputor::onResize(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
MNN_ASSERT(inputs.size() == 2);
MNN_ASSERT(outputs.size() == 1);
auto A = inputs[0];
auto BT = inputs[1];
auto C = outputs[0];
mCurrentDepth = 0;
mFunctions.clear();
mConstTensor.clear();
if (mCacheB) {
return _generateMatMulConstB(A, BT, C);
}
return _generateMatMul(A, BT, C);
}
ErrorCode StrassenMatrixComputor::onExecute(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
// All is done in onResize, just execute it
AUTOTIME;
for (auto& f : mFunctions) {
f();
}
return NO_ERROR;
}
} // namespace MNN