mirror of https://github.com/alibaba/MNN.git
79 lines
3.0 KiB
C++
79 lines
3.0 KiB
C++
|
//
|
||
|
// ShapeConvolution.cpp
|
||
|
// MNN
|
||
|
//
|
||
|
// Created by MNN on 2019/01/10.
|
||
|
// Copyright © 2018, Alibaba Group Holding Limited
|
||
|
//
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "SizeComputer.hpp"
|
||
|
|
||
|
namespace MNN {
|
||
|
class ConvolutionSizeComputer : public SizeComputer {
|
||
|
public:
|
||
|
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
||
|
const std::vector<Tensor*>& outputs) const override {
|
||
|
MNN_ASSERT(1 == inputs.size());
|
||
|
MNN_ASSERT(1 == outputs.size());
|
||
|
auto layer = op->main_as_Convolution2D()->common();
|
||
|
int kernel_width = layer->dilateX() * (layer->kernelX() - 1) + 1;
|
||
|
int kernel_height = layer->dilateY() * (layer->kernelY() - 1) + 1;
|
||
|
|
||
|
int output_width = 1;
|
||
|
int output_height = 1;
|
||
|
|
||
|
auto input = inputs[0];
|
||
|
if (input->buffer().dimensions < 4) {
|
||
|
return false;
|
||
|
}
|
||
|
if (input->width() <= 0 || input->height() <= 0) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (layer->padMode() == PadMode_SAME) {
|
||
|
// Tensorflow padding mode SAME
|
||
|
output_width = ceil((float)input->width() / (float)layer->strideX());
|
||
|
output_height = ceil((float)input->height() / (float)layer->strideY());
|
||
|
} else if (layer->padMode() == PadMode_VALID) {
|
||
|
// Tensorflow padding mode VALID
|
||
|
output_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
|
||
|
output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
|
||
|
} else {
|
||
|
// caffe
|
||
|
int input_width = input->width() + layer->padX() * 2;
|
||
|
int input_height = input->height() + layer->padY() * 2;
|
||
|
output_width = (input_width - kernel_width) / layer->strideX() + 1;
|
||
|
output_height = (input_height - kernel_height) / layer->strideY() + 1;
|
||
|
}
|
||
|
|
||
|
auto& outputBuffer = outputs[0]->buffer();
|
||
|
outputBuffer.dimensions = input->buffer().dimensions;
|
||
|
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
|
||
|
|
||
|
outputBuffer.dim[1].extent = layer->outputCount();
|
||
|
outputBuffer.dim[2].extent = output_height;
|
||
|
outputBuffer.dim[3].extent = output_width;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
virtual float onComputeFlops(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
||
|
const std::vector<Tensor*>& outputs) const override {
|
||
|
auto layer = op->main_as_Convolution2D()->common();
|
||
|
auto kw = layer->kernelX();
|
||
|
auto kh = layer->kernelY();
|
||
|
auto group = layer->group();
|
||
|
auto ic = inputs[0]->channel();
|
||
|
auto oc = outputs[0]->channel();
|
||
|
auto oSize = outputs[0]->width() * outputs[0]->height() * outputs[0]->batch();
|
||
|
|
||
|
auto flops = (float)oSize * kw * kh * (ic * oc / group) / FLOPS_M;
|
||
|
return flops;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_Convolution);
|
||
|
REGISTER_SHAPE(ConvolutionSizeComputer, OpType_ConvolutionDepthwise);
|
||
|
} // namespace MNN
|