mirror of https://github.com/alibaba/MNN.git
				
				
				
			Fix minor typos
1. bechmark -> benchmark 2. MMN -> MNN 3. nomalize -> normalize 4. paramater -> parameter 5. tflie -> tflite
This commit is contained in:
		
							parent
							
								
									ac335b377f
								
							
						
					
					
						commit
						455786f0dc
					
				|  | @ -74,7 +74,7 @@ function bench_android() { | |||
|     adb shell "echo Build Flags: ABI=$ABI  OpenMP=$OPENMP Vulkan=$VULKAN OpenCL=$OPENCL >> $ANDROID_DIR/benchmark.txt" | ||||
|     #benchmark  CPU | ||||
|     adb shell "LD_LIBRARY_PATH=$ANDROID_DIR $ANDROID_DIR/benchmark.out $ANDROID_DIR/benchmark_models $RUN_LOOP $FORWARD_TYPE 2>$ANDROID_DIR/benchmark.err >> $ANDROID_DIR/benchmark.txt" | ||||
|     #bechmark  Vulkan | ||||
|     #benchmark  Vulkan | ||||
|     adb shell "LD_LIBRARY_PATH=$ANDROID_DIR $ANDROID_DIR/benchmark.out $ANDROID_DIR/benchmark_models $RUN_LOOP 7 2>$ANDROID_DIR/benchmark.err >> $ANDROID_DIR/benchmark.txt" | ||||
|     #benchmark OpenGL | ||||
|     #adb shell "LD_LIBRARY_PATH=$ANDROID_DIR $ANDROID_DIR/benchmark.out $ANDROID_DIR/benchmark_models 10 6 2>$ANDROID_DIR/benchmark.err >> $ANDROID_DIR/benchmark.txt" | ||||
|  |  | |||
|  | @ -18,19 +18,19 @@ namespace MNN { | |||
| class CPUInnerProductExecutor : public Execution { | ||||
| public: | ||||
|     CPUInnerProductExecutor(Backend *bn, const MNN::Op *op) : Execution(bn) { | ||||
|         auto paramater  = op->main_as_InnerProduct(); | ||||
|         int outputCount = paramater->outputCount(); | ||||
|         int srcCount    = paramater->weight()->size() / outputCount; | ||||
|         auto parameter  = op->main_as_InnerProduct(); | ||||
|         int outputCount = parameter->outputCount(); | ||||
|         int srcCount    = parameter->weight()->size() / outputCount; | ||||
|         mWeight.reset(CPUConvolution::reorderWeightSize(srcCount, outputCount, 1, 4)); | ||||
|         if (mWeight.get() == nullptr) { | ||||
|             mValid = false; | ||||
|             return; | ||||
|         } | ||||
|         mWeight.clear(); | ||||
|         CPUConvolution::reorderWeight(mWeight.get(), paramater->weight()->data(), srcCount, outputCount, 1, 4); | ||||
|         CPUConvolution::reorderWeight(mWeight.get(), parameter->weight()->data(), srcCount, outputCount, 1, 4); | ||||
|         mBias.reset(ALIGN_UP4(outputCount)); | ||||
|         mBias.clear(); | ||||
|         ::memcpy(mBias.get(), paramater->bias()->data(), paramater->bias()->size() * sizeof(float)); | ||||
|         ::memcpy(mBias.get(), parameter->bias()->data(), parameter->bias()->size() * sizeof(float)); | ||||
|         mInputPad.reset(new Tensor(2)); | ||||
|         mOutputPad.reset(new Tensor(2)); | ||||
|     } | ||||
|  |  | |||
|  | @ -13,7 +13,7 @@ | |||
| namespace MNN { | ||||
| VulkanGroupConvolution::VulkanGroupConvolution(const Op *op, Backend *backend) | ||||
|     : Execution(backend), mTempSrc(4), mTempDst(4) { | ||||
|     mConvParamater = op->main_as_Convolution2D(); | ||||
|     mConvParameter = op->main_as_Convolution2D(); | ||||
|     mBackend       = static_cast<VulkanBackend *>(backend); | ||||
| } | ||||
| 
 | ||||
|  | @ -31,12 +31,12 @@ ErrorCode VulkanGroupConvolution::onExecute(const std::vector<Tensor *> &inputs, | |||
| ErrorCode VulkanGroupConvolution::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) { | ||||
|     auto input      = inputs[0]; | ||||
|     auto output     = outputs[0]; | ||||
|     const int group = mConvParamater->common()->group(); | ||||
|     const int group = mConvParameter->common()->group(); | ||||
|     mTempInputs     = std::vector<Tensor *>{&mTempSrc}; | ||||
|     mTempOutputs    = std::vector<Tensor *>{&mTempDst}; | ||||
|     if (mSubConvolutions.empty()) { | ||||
|         mSubConvolutions.resize(group); | ||||
|         const auto convReal    = mConvParamater; | ||||
|         const auto convReal    = mConvParameter; | ||||
|         const auto common      = convReal->common(); | ||||
|         const auto outputCount = common->outputCount(); | ||||
|         const int fh           = common->kernelY(); | ||||
|  | @ -61,7 +61,7 @@ ErrorCode VulkanGroupConvolution::onResize(const std::vector<Tensor *> &inputs, | |||
|             const float *curWeightPtr = source + i * groupWeightSize; | ||||
|             const float *curBiasPtr   = convReal->bias()->data() + i * groupCO; | ||||
|             std::shared_ptr<Execution> subConvolution(VulkanConvolutionImpl::create( | ||||
|                 mBackend, mConvParamater->common(), input, output, curWeightPtr, curBiasPtr, groupCI, groupCO)); | ||||
|                 mBackend, mConvParameter->common(), input, output, curWeightPtr, curBiasPtr, groupCI, groupCO)); | ||||
|             std::get<1>(mSubConvolutions[i]) = subConvolution; | ||||
|         } | ||||
|     } | ||||
|  |  | |||
|  | @ -24,7 +24,7 @@ private: | |||
|     Tensor mTempDst; | ||||
|     std::vector<Tensor *> mTempInputs; | ||||
|     std::vector<Tensor *> mTempOutputs; | ||||
|     const Convolution2D *mConvParamater; | ||||
|     const Convolution2D *mConvParameter; | ||||
|     std::vector<std::tuple<std::shared_ptr<VulkanCommandPool::Buffer>, std::shared_ptr<Execution>, | ||||
|                            std::shared_ptr<VulkanCommandPool::Buffer>>> | ||||
|         mSubConvolutions; | ||||
|  |  | |||
|  | @ -1,12 +1,12 @@ | |||
| //
 | ||||
| //  VulkanNormlize.cpp
 | ||||
| //  VulkanNormalize.cpp
 | ||||
| //  MNN
 | ||||
| //
 | ||||
| //  Created by MNN on 2019/01/31.
 | ||||
| //  Copyright © 2018, Alibaba Group Holding Limited
 | ||||
| //
 | ||||
| 
 | ||||
| #include "VulkanNormlize.hpp" | ||||
| #include "VulkanNormalize.hpp" | ||||
| #include "Macro.h" | ||||
| #include "TensorUtils.hpp" | ||||
| 
 | ||||
|  | @ -17,11 +17,11 @@ struct GpuParam { | |||
|     float eps; | ||||
| }; | ||||
| 
 | ||||
| VulkanNormlize::VulkanNormlize(const Op* op, Backend* bn) : VulkanBasicExecution(bn) { | ||||
|     auto normlizeParam = op->main_as_Normalize(); | ||||
|     mEps               = normlizeParam->eps(); | ||||
| VulkanNormalize::VulkanNormalize(const Op* op, Backend* bn) : VulkanBasicExecution(bn) { | ||||
|     auto normalizeParam = op->main_as_Normalize(); | ||||
|     mEps                = normalizeParam->eps(); | ||||
| 
 | ||||
|     std::vector<VkDescriptorType> VulkanNormlizeTypes{ | ||||
|     std::vector<VkDescriptorType> VulkanNormalizeTypes{ | ||||
|         VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, | ||||
|         VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, | ||||
|         VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, | ||||
|  | @ -33,29 +33,29 @@ VulkanNormlize::VulkanNormlize(const Op* op, Backend* bn) : VulkanBasicExecution | |||
| 
 | ||||
|     mVkBackend = static_cast<VulkanBackend*>(bn); | ||||
|     mSampler   = mVkBackend->getCommonSampler(); | ||||
|     // normlize
 | ||||
|     mVulkanNormlizePipeline = | ||||
|     // normalize
 | ||||
|     mVulkanNormalizePipeline = | ||||
|         mVkBackend->getPipeline("glsl_normalizeChannel_comp", | ||||
|                                 /*glsl_normalizeChannel_comp, glsl_normalizeChannel_comp_len,*/ VulkanNormlizeTypes); | ||||
|                                 /*glsl_normalizeChannel_comp, glsl_normalizeChannel_comp_len,*/ VulkanNormalizeTypes); | ||||
|     mParamBuffer.reset(new VulkanBuffer(mVkBackend->getMemoryPool(), false, sizeof(GpuParam), nullptr, | ||||
|                                         VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT)); | ||||
|     MNN_ASSERT(normlizeParam->channelShared() == false); | ||||
|     MNN_ASSERT(normalizeParam->channelShared() == false); | ||||
|     // scale
 | ||||
|     mVulkanScalePipeline = | ||||
|         mVkBackend->getPipeline("glsl_scale_comp", /*glsl_scale_comp, glsl_scale_comp_len,*/ VulkanScaleTypes); | ||||
| 
 | ||||
|     mScale.reset(new VulkanBuffer(mVkBackend->getMemoryPool(), false, sizeof(float) * normlizeParam->scale()->size(), | ||||
|                                   normlizeParam->scale()->data(), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)); | ||||
|     mBias.reset(new VulkanBuffer(mVkBackend->getMemoryPool(), false, sizeof(float) * normlizeParam->scale()->size(), | ||||
|     mScale.reset(new VulkanBuffer(mVkBackend->getMemoryPool(), false, sizeof(float) * normalizeParam->scale()->size(), | ||||
|                                   normalizeParam->scale()->data(), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)); | ||||
|     mBias.reset(new VulkanBuffer(mVkBackend->getMemoryPool(), false, sizeof(float) * normalizeParam->scale()->size(), | ||||
|                                  nullptr, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT)); | ||||
|     auto biasPtr = reinterpret_cast<float*>(mBias->map()); | ||||
|     ::memset(biasPtr, 0, sizeof(float) * normlizeParam->scale()->size()); | ||||
|     ::memset(biasPtr, 0, sizeof(float) * normalizeParam->scale()->size()); | ||||
|     mBias->unmap(); | ||||
| } | ||||
| VulkanNormlize::~VulkanNormlize() { | ||||
| VulkanNormalize::~VulkanNormalize() { | ||||
| } | ||||
| ErrorCode VulkanNormlize::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, | ||||
|                                    const VulkanCommandPool::Buffer* cmdBuffer) { | ||||
| ErrorCode VulkanNormalize::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, | ||||
|                                     const VulkanCommandPool::Buffer* cmdBuffer) { | ||||
|     auto input            = inputs[0]; | ||||
|     auto output           = outputs[0]; | ||||
|     const int channelDiv4 = UP_DIV(input->channel(), 4); | ||||
|  | @ -67,28 +67,28 @@ ErrorCode VulkanNormlize::onEncode(const std::vector<Tensor*>& inputs, const std | |||
| 
 | ||||
|     auto tempTensorImage = mVkBackend->findTensor(mTempTensor.deviceId())->image(); | ||||
|     MNN_ASSERT(nullptr != tempTensorImage); | ||||
|     auto VulkanNormlizeParam = reinterpret_cast<GpuParam*>(mParamBuffer->map()); | ||||
|     ::memset(VulkanNormlizeParam, 0, sizeof(GpuParam)); | ||||
|     auto VulkanNormalizeParam = reinterpret_cast<GpuParam*>(mParamBuffer->map()); | ||||
|     ::memset(VulkanNormalizeParam, 0, sizeof(GpuParam)); | ||||
| 
 | ||||
|     VulkanNormlizeParam->imgSize[0]  = input->width(); | ||||
|     VulkanNormlizeParam->imgSize[1]  = input->height(); | ||||
|     VulkanNormlizeParam->imgSize[2]  = channelDiv4; | ||||
|     VulkanNormlizeParam->imgSize[3]  = 0; | ||||
|     VulkanNormlizeParam->channelDiv4 = channelDiv4; | ||||
|     VulkanNormlizeParam->eps         = mEps; | ||||
|     VulkanNormalizeParam->imgSize[0]  = input->width(); | ||||
|     VulkanNormalizeParam->imgSize[1]  = input->height(); | ||||
|     VulkanNormalizeParam->imgSize[2]  = channelDiv4; | ||||
|     VulkanNormalizeParam->imgSize[3]  = 0; | ||||
|     VulkanNormalizeParam->channelDiv4 = channelDiv4; | ||||
|     VulkanNormalizeParam->eps         = mEps; | ||||
| 
 | ||||
|     mParamBuffer->flush(true, 0, sizeof(GpuParam)); | ||||
|     mParamBuffer->unmap(); | ||||
| 
 | ||||
|     // normlize
 | ||||
|     mNormlizeDescriptorSet.reset(mVulkanNormlizePipeline->createSet()); | ||||
|     mNormlizeDescriptorSet->writeImage(reinterpret_cast<VkImageView>(mTempTensor.deviceId()), mSampler->get(), | ||||
|                                        VK_IMAGE_LAYOUT_GENERAL, 0); | ||||
|     mNormlizeDescriptorSet->writeImage(reinterpret_cast<VkImageView>(input->deviceId()), mSampler->get(), | ||||
|                                        VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1); | ||||
|     mNormlizeDescriptorSet->writeBuffer(mParamBuffer->buffer(), 2, mParamBuffer->size()); | ||||
|     // normalize
 | ||||
|     mNormalizeDescriptorSet.reset(mVulkanNormalizePipeline->createSet()); | ||||
|     mNormalizeDescriptorSet->writeImage(reinterpret_cast<VkImageView>(mTempTensor.deviceId()), mSampler->get(), | ||||
|                                         VK_IMAGE_LAYOUT_GENERAL, 0); | ||||
|     mNormalizeDescriptorSet->writeImage(reinterpret_cast<VkImageView>(input->deviceId()), mSampler->get(), | ||||
|                                         VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, 1); | ||||
|     mNormalizeDescriptorSet->writeBuffer(mParamBuffer->buffer(), 2, mParamBuffer->size()); | ||||
| 
 | ||||
|     mVulkanNormlizePipeline->bind(cmdBuffer->get(), mNormlizeDescriptorSet->get()); | ||||
|     mVulkanNormalizePipeline->bind(cmdBuffer->get(), mNormalizeDescriptorSet->get()); | ||||
| 
 | ||||
|     vkCmdDispatch(cmdBuffer->get(), UP_DIV(input->width(), 8), UP_DIV(input->height(), 8), input->batch()); | ||||
| 
 | ||||
|  | @ -111,15 +111,15 @@ ErrorCode VulkanNormlize::onEncode(const std::vector<Tensor*>& inputs, const std | |||
|     return NO_ERROR; | ||||
| } | ||||
| 
 | ||||
| class VulkanNormlizeCreator : public VulkanBackend::Creator { | ||||
| class VulkanNormalizeCreator : public VulkanBackend::Creator { | ||||
| public: | ||||
|     virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const MNN::Op* op, Backend* bn) const override { | ||||
|         return new VulkanNormlize(op, bn); | ||||
|         return new VulkanNormalize(op, bn); | ||||
|     } | ||||
| }; | ||||
| 
 | ||||
| static bool gResistor = []() { | ||||
|     VulkanBackend::addCreator(OpType_Normalize, new VulkanNormlizeCreator); | ||||
|     VulkanBackend::addCreator(OpType_Normalize, new VulkanNormalizeCreator); | ||||
|     return true; | ||||
| }(); | ||||
| 
 | ||||
|  | @ -1,28 +1,28 @@ | |||
| //
 | ||||
| //  VulkanNormlize.hpp
 | ||||
| //  VulkanNormalize.hpp
 | ||||
| //  MNN
 | ||||
| //
 | ||||
| //  Created by MNN on 2019/01/31.
 | ||||
| //  Copyright © 2018, Alibaba Group Holding Limited
 | ||||
| //
 | ||||
| 
 | ||||
| #ifndef VulkanNormlize_hpp | ||||
| #define VulkanNormlize_hpp | ||||
| #ifndef VulkanNormalize_hpp | ||||
| #define VulkanNormalize_hpp | ||||
| #include "VulkanBasicExecution.hpp" | ||||
| 
 | ||||
| namespace MNN { | ||||
| class VulkanNormlize : public VulkanBasicExecution { | ||||
| class VulkanNormalize : public VulkanBasicExecution { | ||||
| public: | ||||
|     VulkanNormlize(const Op* op, Backend* bn); | ||||
|     virtual ~VulkanNormlize(); | ||||
|     VulkanNormalize(const Op* op, Backend* bn); | ||||
|     virtual ~VulkanNormalize(); | ||||
|     ErrorCode onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, | ||||
|                        const VulkanCommandPool::Buffer* cmdBuffer) override; | ||||
| 
 | ||||
| private: | ||||
|     std::shared_ptr<VulkanBuffer> mParamBuffer; | ||||
|     const VulkanPipeline* mVulkanNormlizePipeline; | ||||
|     const VulkanPipeline* mVulkanNormalizePipeline; | ||||
|     const VulkanPipeline* mVulkanScalePipeline; | ||||
|     std::shared_ptr<VulkanPipeline::DescriptorSet> mNormlizeDescriptorSet; | ||||
|     std::shared_ptr<VulkanPipeline::DescriptorSet> mNormalizeDescriptorSet; | ||||
|     std::shared_ptr<VulkanPipeline::DescriptorSet> mScaleDescriptorSet; | ||||
|     std::shared_ptr<VulkanBuffer> mScale; | ||||
|     std::shared_ptr<VulkanBuffer> mBias; | ||||
|  | @ -7,7 +7,7 @@ layout(set = 0, binding = 2) uniform constBuffer{ | |||
| 	ivec4 imgSize; | ||||
| 	int channelDiv4; | ||||
| 	float eps; | ||||
| }uNormlizeParam; | ||||
| }uNormalizeParam; | ||||
| 
 | ||||
| layout(local_size_x = 8, local_size_y = 8) in; | ||||
| 
 | ||||
|  | @ -15,19 +15,19 @@ void main() | |||
| { | ||||
| 	ivec3 pos = ivec3(gl_GlobalInvocationID); | ||||
| 
 | ||||
| 	if(all(lessThan(pos, uNormlizeParam.imgSize.xyz))) | ||||
| 	if(all(lessThan(pos, uNormalizeParam.imgSize.xyz))) | ||||
| 	{ | ||||
| 		vec4 color = texelFetch(uInput, ivec3(pos.x, pos.y, 0), 0); | ||||
| 		vec4 sum = color * color; | ||||
| 		for(int i = 1; i < uNormlizeParam.channelDiv4; ++i) | ||||
| 		for(int i = 1; i < uNormalizeParam.channelDiv4; ++i) | ||||
| 		{ | ||||
| 			color = texelFetch(uInput, ivec3(pos.x, pos.y, i), 0); | ||||
| 			sum += color * color; | ||||
| 		} | ||||
| 
 | ||||
| 		float summerResult = inversesqrt((sum.x + sum.y + sum.z + sum.w) + uNormlizeParam.eps); | ||||
| 		float summerResult = inversesqrt((sum.x + sum.y + sum.z + sum.w) + uNormalizeParam.eps); | ||||
| 		 | ||||
| 		for(int i = 0; i < uNormlizeParam.channelDiv4; ++i) | ||||
| 		for(int i = 0; i < uNormalizeParam.channelDiv4; ++i) | ||||
| 		{ | ||||
| 			vec4 tempSum = vec4(summerResult); | ||||
| 			ivec3 curPos = ivec3(pos.x, pos.y, i); | ||||
|  |  | |||
|  | @ -5,7 +5,7 @@ | |||
|  * found in the LICENSE file. | ||||
|  */ | ||||
| /*
 | ||||
|  Modified by MMN | ||||
|  Modified by MNN | ||||
|  2018.9.19 | ||||
|  */ | ||||
| 
 | ||||
|  |  | |||
|  | @ -5,7 +5,7 @@ | |||
|  * found in the LICENSE file. | ||||
|  */ | ||||
| /*
 | ||||
|  Modified by MMN | ||||
|  Modified by MNN | ||||
|  2018.9.19 | ||||
|  */ | ||||
| 
 | ||||
|  |  | |||
|  | @ -19,13 +19,13 @@ public: | |||
| 
 | ||||
|         auto output    = outputs[0]; | ||||
|         auto input     = inputs[0]; | ||||
|         auto paramater = op->main_as_InnerProduct(); | ||||
|         auto parameter = op->main_as_InnerProduct(); | ||||
| 
 | ||||
|         MNN_ASSERT(2 == input->buffer().dimensions); | ||||
|         output->buffer().dimensions    = input->buffer().dimensions; | ||||
|         output->buffer().dim[0].extent = input->buffer().dim[0].extent; | ||||
|         output->buffer().dim[0].flags  = 0; | ||||
|         output->buffer().dim[1].extent = paramater->outputCount(); | ||||
|         output->buffer().dim[1].extent = parameter->outputCount(); | ||||
|         output->buffer().dim[1].flags  = 0; | ||||
| 
 | ||||
|         return true; | ||||
|  |  | |||
|  | @ -24,7 +24,7 @@ int tflite2MNNNet(const std::string inputModel, const std::string bizCode, std:: | |||
|     const auto subGraphsSize      = tfliteModel->subgraphs.size(); | ||||
|     const auto& tfliteModelBuffer = tfliteModel->buffers; | ||||
| 
 | ||||
|     // check whether this tflie model is quantization model
 | ||||
|     // check whether this tflite model is quantization model
 | ||||
|     // use the weight's data type of Conv2D|DepthwiseConv2D to decide quantizedModel mode
 | ||||
|     bool quantizedModel = true; | ||||
|     for (int i = 0; i < subGraphsSize; ++i) { | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue