mirror of https://github.com/alibaba/MNN.git
|
|
||
|---|---|---|
| .. | ||
| CMakeLists.txt | ||
| README.md | ||
| classficationTopkEval.cpp | ||
| config.json | ||
| turnLabelToClassID.py | ||
README.md
Evaluate accuracy for ILSVRC 2012 (Imagenet Large Scale Visual Recognition Challenge) image classification task
[TOC]
Compile
Set the option—MNN_EVALUATION in the top CMakeLists to be ON like this:
cmake -DMNN_EVALUATION=ON ..
Download dataset
Download ImageNet Validation Dataset(5W) from here.
Turn Label to Class ID
Use script to generate the validation dataset class ID(generated by this script named class_id.txt). You should have two inputs:
- Synset Words (If you use tensorflow model which generate 1001 category, add
backgroundbeforetench, Tinca tinca) - Validation Labels(download file
ILSVRC2012_devkit_t12.tar.gz, and use this script to generate validation labels)
Run Evaluation
Config the evaluation
{
"format":"RGB",
"mean":[
127.5,
127.5,
127.5
],
"normal":[
0.00784314,
0.00784314,
0.00784314
],
"width":224,
"height":224,
"imagePath":"path/to/Val_2012_Images/",
"groundTruthId":"path/to/ILSVRC2012_devkit_t12/class_id.txt"
}
run like this
./classficationTopkEval.out quantized_model.mnn config.json