MNN/demo/exec/multithread_imgrecog.cpp

109 lines
4.1 KiB
C++

//
// pictureRecognition_module.cpp
// MNN
//
// Created by MNN on 2018/05/14.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <stdio.h>
#include <thread>
#include <mutex>
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>
#define MNN_OPEN_TIME_TRACE
#include <algorithm>
#include <fstream>
#include <functional>
#include <memory>
#include <sstream>
#include <vector>
#include <MNN/AutoTime.hpp>
#include <MNN/expr/ExecutorScope.hpp>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include "stb_image_write.h"
using namespace MNN;
using namespace MNN::Express;
int main(int argc, const char* argv[]) {
if (argc < 3) {
MNN_PRINT("Usage: ./pictureRecognition_multithread.out model.mnn input0.jpg input1.jpg input2.jpg ... \n");
return 0;
}
MNN::Express::Module::Config config;
config.rearrange = true;
std::shared_ptr<MNN::Express::Module> net(MNN::Express::Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], &config));
int batchSize = argc - 2;
std::vector<std::thread> threads;
BackendConfig bnConfig;
std::mutex printMutex;
for (int i = 0; i < batchSize; ++i) {
threads.emplace_back([&, i]() {
auto newExe = Executor::newExecutor(MNN_FORWARD_CPU, bnConfig, 1);
ExecutorScope scope(newExe);
std::shared_ptr<Module> tempModule;
{
std::unique_lock<std::mutex> _l(printMutex);
tempModule.reset(Module::clone(net.get()));
}
// Create Input
auto input = MNN::Express::_Input({1, 3, 224, 224}, MNN::Express::NC4HW4);
int size_w = 224;
int size_h = 224;
int bpp = 3;
auto inputPatch = argv[i + 2];
int width, height, channel;
auto inputImage = stbi_load(inputPatch, &width, &height, &channel, 4);
if (nullptr == inputImage) {
MNN_ERROR("Can't open %s\n", inputPatch);
return 0;
}
MNN::CV::Matrix trans;
// Set transform, from dst scale to src, the ways below are both ok
trans.setScale((float)(width-1) / (size_w-1), (float)(height-1) / (size_h-1));
MNN::CV::ImageProcess::Config config;
config.filterType = MNN::CV::BILINEAR;
float mean[3] = {103.94f, 116.78f, 123.68f};
float normals[3] = {0.017f, 0.017f, 0.017f};
// float mean[3] = {127.5f, 127.5f, 127.5f};
// float normals[3] = {0.00785f, 0.00785f, 0.00785f};
::memcpy(config.mean, mean, sizeof(mean));
::memcpy(config.normal, normals, sizeof(normals));
config.sourceFormat = MNN::CV::RGBA;
config.destFormat = MNN::CV::BGR;
std::shared_ptr<MNN::CV::ImageProcess> pretreat(MNN::CV::ImageProcess::create(config));
pretreat->setMatrix(trans);
// for NC4HW4, UP_DIV(3, 4) * 4 = 4
pretreat->convert((uint8_t*)inputImage, width, height, 0, input->writeMap<float>(), 224, 224, 4, 0, halide_type_of<float>());
stbi_image_free(inputImage);
auto outputs = tempModule->onForward({input});
auto output = MNN::Express::_Convert(outputs[0], MNN::Express::NHWC);
output = MNN::Express::_Reshape(output, {0, -1});
int topK = 10;
auto topKV = MNN::Express::_TopKV2(output, MNN::Express::_Scalar<int>(topK));
auto value = topKV[0]->readMap<float>();
auto indice = topKV[1]->readMap<int>();
std::unique_lock<std::mutex> _l(printMutex);
MNN_PRINT("origin size: %d, %d\n", width, height);
MNN_PRINT("For Input: %s \n", argv[i+2]);
for (int v=0; v<topK; ++v) {
MNN_PRINT("%d - %.3f, ", indice[v], value[v]);
}
MNN_PRINT("\n");
return 0;
});
}
for (auto& t : threads) {
t.join();
}
return 0;
}