MNN/demo/exec/pictureRecognition_batch.cpp

334 lines
12 KiB
C++

//
// pictureRecognition_batch.cpp
// MNN
//
// Created by MNN on 2018/05/14.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <stdio.h>
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>
#define MNN_OPEN_TIME_TRACE
#include <algorithm>
#include <fstream>
#include <functional>
#include <memory>
#include <sstream>
#include <vector>
#include <MNN/AutoTime.hpp>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include "stb_image_write.h"
#include "rapidjson/document.h"
#include "rapidjson/stringbuffer.h"
using namespace MNN::CV;
using namespace MNN;
using namespace std;
// behave like python split
vector<string> split(const string sourceStr, string splitChar = " ") {
vector<string> result;
int pos = 0;
int start = 0;
while ((pos = sourceStr.find(splitChar, start)) != string::npos) {
result.emplace_back(sourceStr.substr(start, pos - start));
start = pos + splitChar.size();
}
if (start < sourceStr.size()) {
result.emplace_back(sourceStr.substr(start));
}
return result;
};
#define DUMP_NUM_DATA(type) \
auto data = tensor->host<type>(); \
for (int z = 0; z < outside; ++z) { \
for (int x = 0; x < width; ++x) { \
outputOs << data[x + z * width] << "\t"; \
} \
outputOs << "\n"; \
}
#define DUMP_CHAR_DATA(type) \
auto data = tensor->host<type>(); \
for (int z = 0; z < outside; ++z) { \
for (int x = 0; x < width; ++x) { \
outputOs << static_cast<int>(data[x + z * width]) << "\t"; \
} \
outputOs << "\n"; \
}
static void dumpTensor2File(const Tensor* tensor, const char* file) {
std::ofstream outputOs(file);
auto type = tensor->getType();
int dimension = tensor->buffer().dimensions;
int width = 1;
if (dimension > 1) {
width = tensor->length(dimension - 1);
}
const int outside = tensor->elementSize() / width;
const auto dataType = type.code;
const auto dataBytes = type.bytes();
if (dataType == halide_type_float) {
DUMP_NUM_DATA(float);
}
if (dataType == halide_type_int && dataBytes == 4) {
DUMP_NUM_DATA(int32_t);
}
if (dataType == halide_type_uint && dataBytes == 1) {
DUMP_CHAR_DATA(uint8_t);
}
if (dataType == halide_type_int && dataBytes == 1) {
#ifdef MNN_USE_SSE
auto data = tensor->host<uint8_t>();
for (int z = 0; z < outside; ++z) {
for (int x = 0; x < width; ++x) {
outputOs << (static_cast<int>(data[x + z * width]) - 128) << "\t";
}
outputOs << "\n";
}
#else
DUMP_CHAR_DATA(int8_t);
#endif
}
}
static void _initDebug() {
MNN::TensorCallBackWithInfo beforeCallBack = [&](const std::vector<MNN::Tensor*>& ntensors, const OperatorInfo*) {
return true;
};
MNN::TensorCallBackWithInfo callBack = [&](const std::vector<MNN::Tensor*>& ntensors, const OperatorInfo* info) {
auto opName = info->name();
for (int i = 0; i < ntensors.size(); ++i) {
auto ntensor = ntensors[i];
auto outDimType = ntensor->getDimensionType();
auto expectTensor = new MNN::Tensor(ntensor, outDimType);
ntensor->copyToHostTensor(expectTensor);
auto tensor = expectTensor;
std::ostringstream outputFileName;
auto opCopyName = opName;
for (int j = 0; j < opCopyName.size(); ++j) {
if (opCopyName[j] == '/') {
opCopyName[j] = '_';
}
}
if (tensor->dimensions() == 4) {
MNN_PRINT("Dimensions: 4, W,H,C,B: %d X %d X %d X %d, OP name %s : %d\n",
tensor->width(), tensor->height(), tensor->channel(), tensor->batch(), opName.c_str(), i);
} else {
std::ostringstream oss;
for (int i = 0; i < tensor->dimensions(); i++) {
oss << (i ? " X " : "") << tensor->length(i);
}
MNN_PRINT("Dimensions: %d, %s, OP name %s : %d\n", tensor->dimensions(), oss.str().c_str(), opName.c_str(), i);
}
outputFileName << "output/" << opCopyName << "_" << i;
dumpTensor2File(expectTensor, outputFileName.str().c_str());
delete expectTensor;
}
return true;
};
Express::Executor::getGlobalExecutor()->setCallBack(std::move(beforeCallBack), std::move(callBack));
}
int main(int argc, const char* argv[]) {
if (argc < 5) {
MNN_PRINT("Usage: ./pictureRecognition_batch.out model.mnn imagedir/ groundtruth.txt quantized.json batchsize total_imgs \n");
return 0;
}
rapidjson::Document document;
{
auto configPath = argv[4];
FUNC_PRINT_ALL(configPath, s);
std::ifstream fileNames(configPath);
std::ostringstream output;
output << fileNames.rdbuf();
auto outputStr = output.str();
document.Parse(outputStr.c_str());
if (document.HasParseError()) {
MNN_ERROR("Invalid json\n");
return 0;
}
}
auto picObj = document.GetObject();
ImageProcess::Config _imageProcessConfig;
_imageProcessConfig.filterType = BILINEAR;
_imageProcessConfig.sourceFormat = RGBA;
_imageProcessConfig.destFormat = BGR;
{
if (picObj.HasMember("format")) {
auto format = picObj["format"].GetString();
static std::map<std::string, ImageFormat> formatMap{{"BGR", BGR}, {"RGB", RGB}, {"GRAY", GRAY}, {"RGBA", RGBA}, {"BGRA", BGRA}};
if (formatMap.find(format) != formatMap.end()) {
_imageProcessConfig.destFormat = formatMap.find(format)->second;
}
}
}
_imageProcessConfig.sourceFormat = RGBA;
int width = 224;
int height = 224;
{
if (picObj.HasMember("width")) {
width = picObj["width"].GetInt();
}
if (picObj.HasMember("height")) {
height = picObj["height"].GetInt();
}
if (picObj.HasMember("mean")) {
auto mean = picObj["mean"].GetArray();
int cur = 0;
for (auto iter = mean.begin(); iter != mean.end(); iter++) {
_imageProcessConfig.mean[cur++] = iter->GetFloat();
}
}
if (picObj.HasMember("normal")) {
auto normal = picObj["normal"].GetArray();
int cur = 0;
for (auto iter = normal.begin(); iter != normal.end(); iter++) {
_imageProcessConfig.normal[cur++] = iter->GetFloat();
}
}
}
// Load module with Runtime
MNN::ScheduleConfig sConfig;
sConfig.type = MNN_FORWARD_AUTO;
if (picObj.HasMember("CPU")) {
if (picObj["CPU"].GetBool()) {
sConfig.type = MNN_FORWARD_CPU;
}
}
std::shared_ptr<MNN::Express::Executor::RuntimeManager> rtmgr = std::shared_ptr<MNN::Express::Executor::RuntimeManager>(MNN::Express::Executor::RuntimeManager::createRuntimeManager(sConfig));
if(rtmgr == nullptr) {
MNN_ERROR("Empty RuntimeManger\n");
return 0;
}
if (false) {
_initDebug();
rtmgr->setMode(Interpreter::Session_Debug);
}
// Give cache full path which must be Readable and writable
rtmgr->setCache(".cachefile");
std::shared_ptr<MNN::Express::Module> net(MNN::Express::Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
string pathToImageTxt(argv[3]);
string pathToImages(argv[2]);
std::vector<std::pair<std::string, std::vector<int> > > allTxtLines;
std::ifstream txtFile(argv[3]);
if (!txtFile.is_open()) {
MNN_PRINT("%s: file not found\n", argv[2]);
MNN_ASSERT(false);
}
std::string line;
while (getline(txtFile, line)) {
vector<string> splitStr;
splitStr = split(line, " ");
if (splitStr.size() != 2) {
MNN_PRINT("%s: file format error\n", pathToImageTxt.c_str());
MNN_ASSERT(false);
}
std::pair<std::string, std::vector<int> > dataPair;
dataPair.first = pathToImages + splitStr[0];
vector<string> labels;
labels = split(splitStr[1], ",");
for (int i = 0; i < labels.size(); i++) {
dataPair.second.emplace_back(atoi(labels[i].c_str()));
}
allTxtLines.emplace_back(dataPair);
}
txtFile.close();
// Create Input
// int batchSize = allTxtLines.size();
int batchSize = 10;
int total_images = 50;
float correct = 0;
if (argc > 5)
batchSize = atoi(argv[5]);
if (argc > 6)
total_images = atoi(argv[6]);
int iterations = total_images / batchSize;
for (int iter = 0; iter < iterations; iter++) {
vector<int> labels;
auto input = MNN::Express::_Input({batchSize, 3, width, height}, MNN::Express::NC4HW4);
for (int batch = 0; batch < batchSize; ++batch) {
int size_w = width;
int size_h = height;
int bpp = 3;
int batchIndex = iter * batchSize + batch;
auto inputPatch = allTxtLines[batchIndex].first.c_str();
int inputWidth, inputHeight, channel;
labels.push_back(allTxtLines[batchIndex].second[0]);
auto inputImage = stbi_load(inputPatch, &inputWidth, &inputHeight, &channel, 4);
if (nullptr == inputImage) {
MNN_ERROR("Can't open %s\n", inputPatch);
return 0;
}
MNN_PRINT("origin size: %d, %d -> %d, %d\n", inputWidth, inputHeight, width, height);
Matrix trans;
// Set transform, from dst scale to src, the ways below are both ok
trans.setScale((float)(inputWidth-1) / (size_w-1), (float)(inputHeight-1) / (size_h-1));
std::shared_ptr<ImageProcess> pretreat(ImageProcess::create(_imageProcessConfig));
pretreat->setMatrix(trans);
// for NC4HW4, UP_DIV(3, 4) * 4 = 4
pretreat->convert((uint8_t*)inputImage, inputWidth, inputHeight, 0, input->writeMap<float>() + batch * 4 * width * height, width, height, 4, 0, halide_type_of<float>());
stbi_image_free(inputImage);
}
auto outputs = net->onForward({input});
auto output = MNN::Express::_Convert(outputs[0], MNN::Express::NHWC);
output = MNN::Express::_Reshape(output, {0, -1});
int topK = 1;
auto topKV = MNN::Express::_TopKV2(output, MNN::Express::_Scalar<int>(topK));
auto value = topKV[0];
auto indices = topKV[1];
auto valuePtr = topKV[0]->readMap<float>();
auto indicesPtr = topKV[1]->readMap<int>();
/*
for (int batch = 0; batch < batchSize; ++batch) {
int batchIndex = iter * batchSize + batch;
MNN_PRINT("For Input: %s, label: %d \n", allTxtLines[batchIndex].first.c_str(), allTxtLines[batchIndex].second[0]);
for (int i=0; i<topK; ++i) {
MNN_PRINT("%d, %f\n", indicesPtr[batch * topK + i], valuePtr[batch * topK + i]);
}
}*/
indices = MNN::Express::_Squeeze(indices);
auto label = MNN::Express::_Const(labels.data(), {int(labels.size())}, MNN::Express::NCHW, halide_type_of<int>());
auto accu =MNN::Express::_Cast<int32_t>(MNN::Express::_Equal(MNN::Express::_Cast<int>(indices), label).sum({}));
correct += accu->readMap<int32_t>()[0];
}
MNN_PRINT("batchsize: %d, total: %d, acc: %f %% \n", batchSize, iterations * batchSize, correct / (iterations * batchSize) * 100);
rtmgr->updateCache();
return 0;
}