mirror of https://github.com/alibaba/MNN.git
260 lines
9.3 KiB
C++
260 lines
9.3 KiB
C++
//
|
|
// pictureRecognition_module.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/05/14.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <stdio.h>
|
|
#include <MNN/ImageProcess.hpp>
|
|
#include <MNN/expr/Module.hpp>
|
|
#include <MNN/expr/Executor.hpp>
|
|
#include <MNN/expr/ExprCreator.hpp>
|
|
#include <MNN/expr/Executor.hpp>
|
|
#define MNN_OPEN_TIME_TRACE
|
|
#include <algorithm>
|
|
#include <fstream>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <vector>
|
|
#include <MNN/AutoTime.hpp>
|
|
#define STB_IMAGE_IMPLEMENTATION
|
|
#include "stb_image.h"
|
|
#include "stb_image_write.h"
|
|
#include "rapidjson/document.h"
|
|
#include "rapidjson/stringbuffer.h"
|
|
|
|
using namespace MNN::CV;
|
|
using namespace MNN;
|
|
|
|
|
|
#define DUMP_NUM_DATA(type) \
|
|
auto data = tensor->host<type>(); \
|
|
for (int z = 0; z < outside; ++z) { \
|
|
for (int x = 0; x < width; ++x) { \
|
|
outputOs << data[x + z * width] << "\t"; \
|
|
} \
|
|
outputOs << "\n"; \
|
|
}
|
|
|
|
#define DUMP_CHAR_DATA(type) \
|
|
auto data = tensor->host<type>(); \
|
|
for (int z = 0; z < outside; ++z) { \
|
|
for (int x = 0; x < width; ++x) { \
|
|
outputOs << static_cast<int>(data[x + z * width]) << "\t"; \
|
|
} \
|
|
outputOs << "\n"; \
|
|
}
|
|
|
|
static void dumpTensor2File(const Tensor* tensor, const char* file) {
|
|
std::ofstream outputOs(file);
|
|
auto type = tensor->getType();
|
|
|
|
int dimension = tensor->buffer().dimensions;
|
|
int width = 1;
|
|
if (dimension > 1) {
|
|
width = tensor->length(dimension - 1);
|
|
}
|
|
|
|
const int outside = tensor->elementSize() / width;
|
|
|
|
const auto dataType = type.code;
|
|
const auto dataBytes = type.bytes();
|
|
|
|
if (dataType == halide_type_float) {
|
|
DUMP_NUM_DATA(float);
|
|
}
|
|
if (dataType == halide_type_int && dataBytes == 4) {
|
|
DUMP_NUM_DATA(int32_t);
|
|
}
|
|
if (dataType == halide_type_uint && dataBytes == 1) {
|
|
DUMP_CHAR_DATA(uint8_t);
|
|
}
|
|
if (dataType == halide_type_int && dataBytes == 1) {
|
|
#ifdef MNN_USE_SSE
|
|
auto data = tensor->host<uint8_t>();
|
|
for (int z = 0; z < outside; ++z) {
|
|
for (int x = 0; x < width; ++x) {
|
|
outputOs << (static_cast<int>(data[x + z * width]) - 128) << "\t";
|
|
}
|
|
outputOs << "\n";
|
|
}
|
|
#else
|
|
DUMP_CHAR_DATA(int8_t);
|
|
#endif
|
|
}
|
|
}
|
|
static void _initDebug() {
|
|
MNN::TensorCallBackWithInfo beforeCallBack = [&](const std::vector<MNN::Tensor*>& ntensors, const OperatorInfo*) {
|
|
return true;
|
|
};
|
|
MNN::TensorCallBackWithInfo callBack = [&](const std::vector<MNN::Tensor*>& ntensors, const OperatorInfo* info) {
|
|
auto opName = info->name();
|
|
for (int i = 0; i < ntensors.size(); ++i) {
|
|
auto ntensor = ntensors[i];
|
|
auto outDimType = ntensor->getDimensionType();
|
|
auto expectTensor = new MNN::Tensor(ntensor, outDimType);
|
|
ntensor->copyToHostTensor(expectTensor);
|
|
|
|
auto tensor = expectTensor;
|
|
|
|
std::ostringstream outputFileName;
|
|
auto opCopyName = opName;
|
|
for (int j = 0; j < opCopyName.size(); ++j) {
|
|
if (opCopyName[j] == '/') {
|
|
opCopyName[j] = '_';
|
|
}
|
|
}
|
|
if (tensor->dimensions() == 4) {
|
|
MNN_PRINT("Dimensions: 4, W,H,C,B: %d X %d X %d X %d, OP name %s : %d\n",
|
|
tensor->width(), tensor->height(), tensor->channel(), tensor->batch(), opName.c_str(), i);
|
|
} else {
|
|
std::ostringstream oss;
|
|
for (int i = 0; i < tensor->dimensions(); i++) {
|
|
oss << (i ? " X " : "") << tensor->length(i);
|
|
}
|
|
|
|
MNN_PRINT("Dimensions: %d, %s, OP name %s : %d\n", tensor->dimensions(), oss.str().c_str(), opName.c_str(), i);
|
|
}
|
|
|
|
outputFileName << "output/" << opCopyName << "_" << i;
|
|
dumpTensor2File(expectTensor, outputFileName.str().c_str());
|
|
delete expectTensor;
|
|
}
|
|
return true;
|
|
};
|
|
Express::Executor::getGlobalExecutor()->setCallBack(std::move(beforeCallBack), std::move(callBack));
|
|
}
|
|
|
|
int main(int argc, const char* argv[]) {
|
|
if (argc < 4) {
|
|
MNN_PRINT("Usage: ./pictureRecognition_module.out model.mnn config.json input0.jpg input1.jpg input2.jpg ... \n");
|
|
return 0;
|
|
}
|
|
|
|
rapidjson::Document document;
|
|
{
|
|
auto configPath = argv[2];
|
|
FUNC_PRINT_ALL(configPath, s);
|
|
std::ifstream fileNames(configPath);
|
|
std::ostringstream output;
|
|
output << fileNames.rdbuf();
|
|
auto outputStr = output.str();
|
|
document.Parse(outputStr.c_str());
|
|
if (document.HasParseError()) {
|
|
MNN_ERROR("Invalid json\n");
|
|
return 0;
|
|
}
|
|
}
|
|
auto picObj = document.GetObject();
|
|
ImageProcess::Config _imageProcessConfig;
|
|
_imageProcessConfig.filterType = BILINEAR;
|
|
_imageProcessConfig.sourceFormat = RGBA;
|
|
_imageProcessConfig.destFormat = BGR;
|
|
|
|
{
|
|
if (picObj.HasMember("format")) {
|
|
auto format = picObj["format"].GetString();
|
|
static std::map<std::string, ImageFormat> formatMap{{"BGR", BGR}, {"RGB", RGB}, {"GRAY", GRAY}, {"RGBA", RGBA}, {"BGRA", BGRA}};
|
|
if (formatMap.find(format) != formatMap.end()) {
|
|
_imageProcessConfig.destFormat = formatMap.find(format)->second;
|
|
}
|
|
}
|
|
}
|
|
|
|
_imageProcessConfig.sourceFormat = RGBA;
|
|
int width = 224;
|
|
int height = 224;
|
|
{
|
|
if (picObj.HasMember("width")) {
|
|
width = picObj["width"].GetInt();
|
|
}
|
|
if (picObj.HasMember("height")) {
|
|
height = picObj["height"].GetInt();
|
|
}
|
|
if (picObj.HasMember("mean")) {
|
|
auto mean = picObj["mean"].GetArray();
|
|
int cur = 0;
|
|
for (auto iter = mean.begin(); iter != mean.end(); iter++) {
|
|
_imageProcessConfig.mean[cur++] = iter->GetFloat();
|
|
}
|
|
}
|
|
if (picObj.HasMember("normal")) {
|
|
auto normal = picObj["normal"].GetArray();
|
|
int cur = 0;
|
|
for (auto iter = normal.begin(); iter != normal.end(); iter++) {
|
|
_imageProcessConfig.normal[cur++] = iter->GetFloat();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Load module with Runtime
|
|
MNN::ScheduleConfig sConfig;
|
|
sConfig.type = MNN_FORWARD_AUTO;
|
|
if (picObj.HasMember("CPU")) {
|
|
if (picObj["CPU"].GetBool()) {
|
|
sConfig.type = MNN_FORWARD_CPU;
|
|
}
|
|
}
|
|
|
|
std::shared_ptr<MNN::Express::Executor::RuntimeManager> rtmgr = std::shared_ptr<MNN::Express::Executor::RuntimeManager>(MNN::Express::Executor::RuntimeManager::createRuntimeManager(sConfig));
|
|
if(rtmgr == nullptr) {
|
|
MNN_ERROR("Empty RuntimeManger\n");
|
|
return 0;
|
|
}
|
|
|
|
if (false) {
|
|
_initDebug();
|
|
rtmgr->setMode(Interpreter::Session_Debug);
|
|
}
|
|
|
|
// Give cache full path which must be Readable and writable
|
|
rtmgr->setCache(".cachefile");
|
|
|
|
std::shared_ptr<MNN::Express::Module> net(MNN::Express::Module::load(std::vector<std::string>{}, std::vector<std::string>{}, argv[1], rtmgr));
|
|
|
|
// Create Input
|
|
int batchSize = argc - 3;
|
|
auto input = MNN::Express::_Input({batchSize, 3, width, height}, MNN::Express::NC4HW4);
|
|
for (int batch = 0; batch < batchSize; ++batch) {
|
|
int size_w = width;
|
|
int size_h = height;
|
|
int bpp = 3;
|
|
|
|
auto inputPatch = argv[batch + 3];
|
|
int inputWidth, inputHeight, channel;
|
|
auto inputImage = stbi_load(inputPatch, &inputWidth, &inputHeight, &channel, 4);
|
|
if (nullptr == inputImage) {
|
|
MNN_ERROR("Can't open %s\n", inputPatch);
|
|
return 0;
|
|
}
|
|
MNN_PRINT("origin size: %d, %d -> %d, %d\n", inputWidth, inputHeight, width, height);
|
|
Matrix trans;
|
|
// Set transform, from dst scale to src, the ways below are both ok
|
|
trans.setScale((float)(inputWidth-1) / (size_w-1), (float)(inputHeight-1) / (size_h-1));
|
|
|
|
std::shared_ptr<ImageProcess> pretreat(ImageProcess::create(_imageProcessConfig));
|
|
pretreat->setMatrix(trans);
|
|
// for NC4HW4, UP_DIV(3, 4) * 4 = 4
|
|
pretreat->convert((uint8_t*)inputImage, inputWidth, inputHeight, 0, input->writeMap<float>() + batch * 4 * width * height, width, height, 4, 0, halide_type_of<float>());
|
|
stbi_image_free(inputImage);
|
|
}
|
|
auto outputs = net->onForward({input});
|
|
auto output = MNN::Express::_Convert(outputs[0], MNN::Express::NHWC);
|
|
output = MNN::Express::_Reshape(output, {0, -1});
|
|
int topK = 10;
|
|
auto topKV = MNN::Express::_TopKV2(output, MNN::Express::_Scalar<int>(topK));
|
|
auto value = topKV[0]->readMap<float>();
|
|
auto indice = topKV[1]->readMap<int>();
|
|
for (int batch = 0; batch < batchSize; ++batch) {
|
|
MNN_PRINT("For Input: %s \n", argv[batch+3]);
|
|
for (int i=0; i<topK; ++i) {
|
|
MNN_PRINT("%d, %f\n", indice[batch * topK + i], value[batch * topK + i]);
|
|
}
|
|
}
|
|
rtmgr->updateCache();
|
|
|
|
return 0;
|
|
} |