MNN/schema/current/TrainInfo_generated.h

395 lines
15 KiB
C++

// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_TRAININFO_MNNTRAIN_H_
#define FLATBUFFERS_GENERATED_TRAININFO_MNNTRAIN_H_
#include "flatbuffers/flatbuffers.h"
namespace MNNTrain {
struct OpInfo;
struct OpInfoT;
struct KV;
struct KVT;
struct TrainInfo;
struct TrainInfoT;
inline const flatbuffers::TypeTable *OpInfoTypeTable();
inline const flatbuffers::TypeTable *KVTypeTable();
inline const flatbuffers::TypeTable *TrainInfoTypeTable();
struct OpInfoT : public flatbuffers::NativeTable {
typedef OpInfo TableType;
std::string op;
std::string weight;
std::string bias;
OpInfoT() {
}
};
struct OpInfo FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
typedef OpInfoT NativeTableType;
static const flatbuffers::TypeTable *MiniReflectTypeTable() {
return OpInfoTypeTable();
}
const flatbuffers::String *op() const {
return GetPointer<const flatbuffers::String *>(4);
}
const flatbuffers::String *weight() const {
return GetPointer<const flatbuffers::String *>(6);
}
const flatbuffers::String *bias() const {
return GetPointer<const flatbuffers::String *>(8);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset(verifier, 4) &&
verifier.VerifyString(op()) &&
VerifyOffset(verifier, 6) &&
verifier.VerifyString(weight()) &&
VerifyOffset(verifier, 8) &&
verifier.VerifyString(bias()) &&
verifier.EndTable();
}
OpInfoT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(OpInfoT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
static flatbuffers::Offset<OpInfo> Pack(flatbuffers::FlatBufferBuilder &_fbb, const OpInfoT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct OpInfoBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_op(flatbuffers::Offset<flatbuffers::String> op) {
fbb_.AddOffset(4, op);
}
void add_weight(flatbuffers::Offset<flatbuffers::String> weight) {
fbb_.AddOffset(6, weight);
}
void add_bias(flatbuffers::Offset<flatbuffers::String> bias) {
fbb_.AddOffset(8, bias);
}
explicit OpInfoBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
OpInfoBuilder &operator=(const OpInfoBuilder &);
flatbuffers::Offset<OpInfo> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<OpInfo>(end);
return o;
}
};
inline flatbuffers::Offset<OpInfo> CreateOpInfo(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<flatbuffers::String> op = 0,
flatbuffers::Offset<flatbuffers::String> weight = 0,
flatbuffers::Offset<flatbuffers::String> bias = 0) {
OpInfoBuilder builder_(_fbb);
builder_.add_bias(bias);
builder_.add_weight(weight);
builder_.add_op(op);
return builder_.Finish();
}
flatbuffers::Offset<OpInfo> CreateOpInfo(flatbuffers::FlatBufferBuilder &_fbb, const OpInfoT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
struct KVT : public flatbuffers::NativeTable {
typedef KV TableType;
std::string key;
std::string value;
KVT() {
}
};
struct KV FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
typedef KVT NativeTableType;
static const flatbuffers::TypeTable *MiniReflectTypeTable() {
return KVTypeTable();
}
const flatbuffers::String *key() const {
return GetPointer<const flatbuffers::String *>(4);
}
const flatbuffers::String *value() const {
return GetPointer<const flatbuffers::String *>(6);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset(verifier, 4) &&
verifier.VerifyString(key()) &&
VerifyOffset(verifier, 6) &&
verifier.VerifyString(value()) &&
verifier.EndTable();
}
KVT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(KVT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
static flatbuffers::Offset<KV> Pack(flatbuffers::FlatBufferBuilder &_fbb, const KVT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct KVBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_key(flatbuffers::Offset<flatbuffers::String> key) {
fbb_.AddOffset(4, key);
}
void add_value(flatbuffers::Offset<flatbuffers::String> value) {
fbb_.AddOffset(6, value);
}
explicit KVBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
KVBuilder &operator=(const KVBuilder &);
flatbuffers::Offset<KV> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<KV>(end);
return o;
}
};
inline flatbuffers::Offset<KV> CreateKV(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<flatbuffers::String> key = 0,
flatbuffers::Offset<flatbuffers::String> value = 0) {
KVBuilder builder_(_fbb);
builder_.add_value(value);
builder_.add_key(key);
return builder_.Finish();
}
flatbuffers::Offset<KV> CreateKV(flatbuffers::FlatBufferBuilder &_fbb, const KVT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
struct TrainInfoT : public flatbuffers::NativeTable {
typedef TrainInfo TableType;
std::vector<std::unique_ptr<KVT>> trainables;
std::vector<std::unique_ptr<OpInfoT>> convolutions;
std::vector<std::unique_ptr<KVT>> batchnormal;
TrainInfoT() {
}
};
struct TrainInfo FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
typedef TrainInfoT NativeTableType;
static const flatbuffers::TypeTable *MiniReflectTypeTable() {
return TrainInfoTypeTable();
}
const flatbuffers::Vector<flatbuffers::Offset<KV>> *trainables() const {
return GetPointer<const flatbuffers::Vector<flatbuffers::Offset<KV>> *>(4);
}
const flatbuffers::Vector<flatbuffers::Offset<OpInfo>> *convolutions() const {
return GetPointer<const flatbuffers::Vector<flatbuffers::Offset<OpInfo>> *>(6);
}
const flatbuffers::Vector<flatbuffers::Offset<KV>> *batchnormal() const {
return GetPointer<const flatbuffers::Vector<flatbuffers::Offset<KV>> *>(8);
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyOffset(verifier, 4) &&
verifier.VerifyVector(trainables()) &&
verifier.VerifyVectorOfTables(trainables()) &&
VerifyOffset(verifier, 6) &&
verifier.VerifyVector(convolutions()) &&
verifier.VerifyVectorOfTables(convolutions()) &&
VerifyOffset(verifier, 8) &&
verifier.VerifyVector(batchnormal()) &&
verifier.VerifyVectorOfTables(batchnormal()) &&
verifier.EndTable();
}
TrainInfoT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(TrainInfoT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
static flatbuffers::Offset<TrainInfo> Pack(flatbuffers::FlatBufferBuilder &_fbb, const TrainInfoT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct TrainInfoBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_trainables(flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<KV>>> trainables) {
fbb_.AddOffset(4, trainables);
}
void add_convolutions(flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<OpInfo>>> convolutions) {
fbb_.AddOffset(6, convolutions);
}
void add_batchnormal(flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<KV>>> batchnormal) {
fbb_.AddOffset(8, batchnormal);
}
explicit TrainInfoBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
TrainInfoBuilder &operator=(const TrainInfoBuilder &);
flatbuffers::Offset<TrainInfo> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<TrainInfo>(end);
return o;
}
};
inline flatbuffers::Offset<TrainInfo> CreateTrainInfo(
flatbuffers::FlatBufferBuilder &_fbb,
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<KV>>> trainables = 0,
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<OpInfo>>> convolutions = 0,
flatbuffers::Offset<flatbuffers::Vector<flatbuffers::Offset<KV>>> batchnormal = 0) {
TrainInfoBuilder builder_(_fbb);
builder_.add_batchnormal(batchnormal);
builder_.add_convolutions(convolutions);
builder_.add_trainables(trainables);
return builder_.Finish();
}
flatbuffers::Offset<TrainInfo> CreateTrainInfo(flatbuffers::FlatBufferBuilder &_fbb, const TrainInfoT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
inline OpInfoT *OpInfo::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
auto _o = new OpInfoT();
UnPackTo(_o, _resolver);
return _o;
}
inline void OpInfo::UnPackTo(OpInfoT *_o, const flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = op(); if (_e) _o->op = _e->str(); };
{ auto _e = weight(); if (_e) _o->weight = _e->str(); };
{ auto _e = bias(); if (_e) _o->bias = _e->str(); };
}
inline flatbuffers::Offset<OpInfo> OpInfo::Pack(flatbuffers::FlatBufferBuilder &_fbb, const OpInfoT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
return CreateOpInfo(_fbb, _o, _rehasher);
}
inline flatbuffers::Offset<OpInfo> CreateOpInfo(flatbuffers::FlatBufferBuilder &_fbb, const OpInfoT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const OpInfoT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _op = _o->op.empty() ? 0 : _fbb.CreateString(_o->op);
auto _weight = _o->weight.empty() ? 0 : _fbb.CreateString(_o->weight);
auto _bias = _o->bias.empty() ? 0 : _fbb.CreateString(_o->bias);
return MNNTrain::CreateOpInfo(
_fbb,
_op,
_weight,
_bias);
}
inline KVT *KV::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
auto _o = new KVT();
UnPackTo(_o, _resolver);
return _o;
}
inline void KV::UnPackTo(KVT *_o, const flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = key(); if (_e) _o->key = _e->str(); };
{ auto _e = value(); if (_e) _o->value = _e->str(); };
}
inline flatbuffers::Offset<KV> KV::Pack(flatbuffers::FlatBufferBuilder &_fbb, const KVT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
return CreateKV(_fbb, _o, _rehasher);
}
inline flatbuffers::Offset<KV> CreateKV(flatbuffers::FlatBufferBuilder &_fbb, const KVT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const KVT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _key = _o->key.empty() ? 0 : _fbb.CreateString(_o->key);
auto _value = _o->value.empty() ? 0 : _fbb.CreateString(_o->value);
return MNNTrain::CreateKV(
_fbb,
_key,
_value);
}
inline TrainInfoT *TrainInfo::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
auto _o = new TrainInfoT();
UnPackTo(_o, _resolver);
return _o;
}
inline void TrainInfo::UnPackTo(TrainInfoT *_o, const flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = trainables(); if (_e) { _o->trainables.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->trainables[_i] = std::unique_ptr<KVT>(_e->Get(_i)->UnPack(_resolver)); } } };
{ auto _e = convolutions(); if (_e) { _o->convolutions.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->convolutions[_i] = std::unique_ptr<OpInfoT>(_e->Get(_i)->UnPack(_resolver)); } } };
{ auto _e = batchnormal(); if (_e) { _o->batchnormal.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->batchnormal[_i] = std::unique_ptr<KVT>(_e->Get(_i)->UnPack(_resolver)); } } };
}
inline flatbuffers::Offset<TrainInfo> TrainInfo::Pack(flatbuffers::FlatBufferBuilder &_fbb, const TrainInfoT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
return CreateTrainInfo(_fbb, _o, _rehasher);
}
inline flatbuffers::Offset<TrainInfo> CreateTrainInfo(flatbuffers::FlatBufferBuilder &_fbb, const TrainInfoT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const TrainInfoT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _trainables = _o->trainables.size() ? _fbb.CreateVector<flatbuffers::Offset<KV>> (_o->trainables.size(), [](size_t i, _VectorArgs *__va) { return CreateKV(*__va->__fbb, __va->__o->trainables[i].get(), __va->__rehasher); }, &_va ) : 0;
auto _convolutions = _o->convolutions.size() ? _fbb.CreateVector<flatbuffers::Offset<OpInfo>> (_o->convolutions.size(), [](size_t i, _VectorArgs *__va) { return CreateOpInfo(*__va->__fbb, __va->__o->convolutions[i].get(), __va->__rehasher); }, &_va ) : 0;
auto _batchnormal = _o->batchnormal.size() ? _fbb.CreateVector<flatbuffers::Offset<KV>> (_o->batchnormal.size(), [](size_t i, _VectorArgs *__va) { return CreateKV(*__va->__fbb, __va->__o->batchnormal[i].get(), __va->__rehasher); }, &_va ) : 0;
return MNNTrain::CreateTrainInfo(
_fbb,
_trainables,
_convolutions,
_batchnormal);
}
inline const flatbuffers::TypeTable *OpInfoTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_STRING, 0, -1 },
{ flatbuffers::ET_STRING, 0, -1 },
{ flatbuffers::ET_STRING, 0, -1 }
};
static const char * const names[] = {
"op",
"weight",
"bias"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_TABLE, 3, type_codes, nullptr, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *KVTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_STRING, 0, -1 },
{ flatbuffers::ET_STRING, 0, -1 }
};
static const char * const names[] = {
"key",
"value"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_TABLE, 2, type_codes, nullptr, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *TrainInfoTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_SEQUENCE, 1, 0 },
{ flatbuffers::ET_SEQUENCE, 1, 1 },
{ flatbuffers::ET_SEQUENCE, 1, 0 }
};
static const flatbuffers::TypeFunction type_refs[] = {
KVTypeTable,
OpInfoTypeTable
};
static const char * const names[] = {
"trainables",
"convolutions",
"batchnormal"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_TABLE, 3, type_codes, type_refs, nullptr, names
};
return &tt;
}
} // namespace MNNTrain
#endif // FLATBUFFERS_GENERATED_TRAININFO_MNNTRAIN_H_