MNN/schema/current/UserDefine_generated.h

872 lines
27 KiB
C++

// automatically generated by the FlatBuffers compiler, do not modify
#ifndef FLATBUFFERS_GENERATED_USERDEFINE_MNN_H_
#define FLATBUFFERS_GENERATED_USERDEFINE_MNN_H_
#include "Tensor_generated.h"
#include "Type_generated.h"
namespace MNN {
struct TensorConvertInfo;
struct TensorConvertInfoT;
struct GridSample;
struct GridSampleT;
struct ImageProcessParam;
struct ImageProcessParamT;
inline const flatbuffers::TypeTable *TensorConvertInfoTypeTable();
inline const flatbuffers::TypeTable *GridSampleTypeTable();
inline const flatbuffers::TypeTable *ImageProcessParamTypeTable();
enum SampleMode {
SampleMode_BILINEAR = 0,
SampleMode_NEAREST = 1,
SampleMode_MIN = SampleMode_BILINEAR,
SampleMode_MAX = SampleMode_NEAREST
};
inline const SampleMode (&EnumValuesSampleMode())[2] {
static const SampleMode values[] = {
SampleMode_BILINEAR,
SampleMode_NEAREST
};
return values;
}
inline const char * const *EnumNamesSampleMode() {
static const char * const names[] = {
"BILINEAR",
"NEAREST",
nullptr
};
return names;
}
inline const char *EnumNameSampleMode(SampleMode e) {
if (e < SampleMode_BILINEAR || e > SampleMode_NEAREST) return "";
const size_t index = static_cast<int>(e);
return EnumNamesSampleMode()[index];
}
enum BorderMode {
BorderMode_ZEROS = 0,
BorderMode_CLAMP = 1,
BorderMode_REFLECTION = 2,
BorderMode_CUBE = 3,
BorderMode_MIN = BorderMode_ZEROS,
BorderMode_MAX = BorderMode_CUBE
};
inline const BorderMode (&EnumValuesBorderMode())[4] {
static const BorderMode values[] = {
BorderMode_ZEROS,
BorderMode_CLAMP,
BorderMode_REFLECTION,
BorderMode_CUBE
};
return values;
}
inline const char * const *EnumNamesBorderMode() {
static const char * const names[] = {
"ZEROS",
"CLAMP",
"REFLECTION",
"CUBE",
nullptr
};
return names;
}
inline const char *EnumNameBorderMode(BorderMode e) {
if (e < BorderMode_ZEROS || e > BorderMode_CUBE) return "";
const size_t index = static_cast<int>(e);
return EnumNamesBorderMode()[index];
}
enum ImageFormatType {
ImageFormatType_RGBA = 0,
ImageFormatType_RGB = 1,
ImageFormatType_BGR = 2,
ImageFormatType_GRAY = 3,
ImageFormatType_BGRA = 4,
ImageFormatType_YCrCb = 5,
ImageFormatType_YUV = 6,
ImageFormatType_HSV = 7,
ImageFormatType_XYZ = 8,
ImageFormatType_BGR555 = 9,
ImageFormatType_BGR565 = 10,
ImageFormatType_YUV_NV21 = 11,
ImageFormatType_YUV_NV12 = 12,
ImageFormatType_YUV_I420 = 13,
ImageFormatType_HSV_FULL = 14,
ImageFormatType_MIN = ImageFormatType_RGBA,
ImageFormatType_MAX = ImageFormatType_HSV_FULL
};
inline const ImageFormatType (&EnumValuesImageFormatType())[15] {
static const ImageFormatType values[] = {
ImageFormatType_RGBA,
ImageFormatType_RGB,
ImageFormatType_BGR,
ImageFormatType_GRAY,
ImageFormatType_BGRA,
ImageFormatType_YCrCb,
ImageFormatType_YUV,
ImageFormatType_HSV,
ImageFormatType_XYZ,
ImageFormatType_BGR555,
ImageFormatType_BGR565,
ImageFormatType_YUV_NV21,
ImageFormatType_YUV_NV12,
ImageFormatType_YUV_I420,
ImageFormatType_HSV_FULL
};
return values;
}
inline const char * const *EnumNamesImageFormatType() {
static const char * const names[] = {
"RGBA",
"RGB",
"BGR",
"GRAY",
"BGRA",
"YCrCb",
"YUV",
"HSV",
"XYZ",
"BGR555",
"BGR565",
"YUV_NV21",
"YUV_NV12",
"YUV_I420",
"HSV_FULL",
nullptr
};
return names;
}
inline const char *EnumNameImageFormatType(ImageFormatType e) {
if (e < ImageFormatType_RGBA || e > ImageFormatType_HSV_FULL) return "";
const size_t index = static_cast<int>(e);
return EnumNamesImageFormatType()[index];
}
enum FilterType {
FilterType_NEAREST = 0,
FilterType_BILINEAR = 1,
FilterType_BICUBIC = 2,
FilterType_MIN = FilterType_NEAREST,
FilterType_MAX = FilterType_BICUBIC
};
inline const FilterType (&EnumValuesFilterType())[3] {
static const FilterType values[] = {
FilterType_NEAREST,
FilterType_BILINEAR,
FilterType_BICUBIC
};
return values;
}
inline const char * const *EnumNamesFilterType() {
static const char * const names[] = {
"NEAREST",
"BILINEAR",
"BICUBIC",
nullptr
};
return names;
}
inline const char *EnumNameFilterType(FilterType e) {
if (e < FilterType_NEAREST || e > FilterType_BICUBIC) return "";
const size_t index = static_cast<int>(e);
return EnumNamesFilterType()[index];
}
enum WrapType {
WrapType_CLAMP_TO_EDGE = 0,
WrapType_ZERO = 1,
WrapType_REPEAT = 2,
WrapType_MIN = WrapType_CLAMP_TO_EDGE,
WrapType_MAX = WrapType_REPEAT
};
inline const WrapType (&EnumValuesWrapType())[3] {
static const WrapType values[] = {
WrapType_CLAMP_TO_EDGE,
WrapType_ZERO,
WrapType_REPEAT
};
return values;
}
inline const char * const *EnumNamesWrapType() {
static const char * const names[] = {
"CLAMP_TO_EDGE",
"ZERO",
"REPEAT",
nullptr
};
return names;
}
inline const char *EnumNameWrapType(WrapType e) {
if (e < WrapType_CLAMP_TO_EDGE || e > WrapType_REPEAT) return "";
const size_t index = static_cast<int>(e);
return EnumNamesWrapType()[index];
}
struct TensorConvertInfoT : public flatbuffers::NativeTable {
typedef TensorConvertInfo TableType;
MNN_DATA_FORMAT source;
MNN_DATA_FORMAT dest;
TensorConvertInfoT()
: source(MNN_DATA_FORMAT_NCHW),
dest(MNN_DATA_FORMAT_NCHW) {
}
};
struct TensorConvertInfo FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
typedef TensorConvertInfoT NativeTableType;
static const flatbuffers::TypeTable *MiniReflectTypeTable() {
return TensorConvertInfoTypeTable();
}
MNN_DATA_FORMAT source() const {
return static_cast<MNN_DATA_FORMAT>(GetField<int8_t>(4, 0));
}
MNN_DATA_FORMAT dest() const {
return static_cast<MNN_DATA_FORMAT>(GetField<int8_t>(6, 0));
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int8_t>(verifier, 4) &&
VerifyField<int8_t>(verifier, 6) &&
verifier.EndTable();
}
TensorConvertInfoT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(TensorConvertInfoT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
static flatbuffers::Offset<TensorConvertInfo> Pack(flatbuffers::FlatBufferBuilder &_fbb, const TensorConvertInfoT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct TensorConvertInfoBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_source(MNN_DATA_FORMAT source) {
fbb_.AddElement<int8_t>(4, static_cast<int8_t>(source), 0);
}
void add_dest(MNN_DATA_FORMAT dest) {
fbb_.AddElement<int8_t>(6, static_cast<int8_t>(dest), 0);
}
explicit TensorConvertInfoBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
TensorConvertInfoBuilder &operator=(const TensorConvertInfoBuilder &);
flatbuffers::Offset<TensorConvertInfo> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<TensorConvertInfo>(end);
return o;
}
};
inline flatbuffers::Offset<TensorConvertInfo> CreateTensorConvertInfo(
flatbuffers::FlatBufferBuilder &_fbb,
MNN_DATA_FORMAT source = MNN_DATA_FORMAT_NCHW,
MNN_DATA_FORMAT dest = MNN_DATA_FORMAT_NCHW) {
TensorConvertInfoBuilder builder_(_fbb);
builder_.add_dest(dest);
builder_.add_source(source);
return builder_.Finish();
}
flatbuffers::Offset<TensorConvertInfo> CreateTensorConvertInfo(flatbuffers::FlatBufferBuilder &_fbb, const TensorConvertInfoT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
struct GridSampleT : public flatbuffers::NativeTable {
typedef GridSample TableType;
SampleMode mode;
BorderMode paddingMode;
bool alignCorners;
bool backward;
GridSampleT()
: mode(SampleMode_BILINEAR),
paddingMode(BorderMode_ZEROS),
alignCorners(false),
backward(false) {
}
};
struct GridSample FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
typedef GridSampleT NativeTableType;
static const flatbuffers::TypeTable *MiniReflectTypeTable() {
return GridSampleTypeTable();
}
SampleMode mode() const {
return static_cast<SampleMode>(GetField<int8_t>(4, 0));
}
BorderMode paddingMode() const {
return static_cast<BorderMode>(GetField<int8_t>(6, 0));
}
bool alignCorners() const {
return GetField<uint8_t>(8, 0) != 0;
}
bool backward() const {
return GetField<uint8_t>(10, 0) != 0;
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int8_t>(verifier, 4) &&
VerifyField<int8_t>(verifier, 6) &&
VerifyField<uint8_t>(verifier, 8) &&
VerifyField<uint8_t>(verifier, 10) &&
verifier.EndTable();
}
GridSampleT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(GridSampleT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
static flatbuffers::Offset<GridSample> Pack(flatbuffers::FlatBufferBuilder &_fbb, const GridSampleT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct GridSampleBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_mode(SampleMode mode) {
fbb_.AddElement<int8_t>(4, static_cast<int8_t>(mode), 0);
}
void add_paddingMode(BorderMode paddingMode) {
fbb_.AddElement<int8_t>(6, static_cast<int8_t>(paddingMode), 0);
}
void add_alignCorners(bool alignCorners) {
fbb_.AddElement<uint8_t>(8, static_cast<uint8_t>(alignCorners), 0);
}
void add_backward(bool backward) {
fbb_.AddElement<uint8_t>(10, static_cast<uint8_t>(backward), 0);
}
explicit GridSampleBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
GridSampleBuilder &operator=(const GridSampleBuilder &);
flatbuffers::Offset<GridSample> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<GridSample>(end);
return o;
}
};
inline flatbuffers::Offset<GridSample> CreateGridSample(
flatbuffers::FlatBufferBuilder &_fbb,
SampleMode mode = SampleMode_BILINEAR,
BorderMode paddingMode = BorderMode_ZEROS,
bool alignCorners = false,
bool backward = false) {
GridSampleBuilder builder_(_fbb);
builder_.add_backward(backward);
builder_.add_alignCorners(alignCorners);
builder_.add_paddingMode(paddingMode);
builder_.add_mode(mode);
return builder_.Finish();
}
flatbuffers::Offset<GridSample> CreateGridSample(flatbuffers::FlatBufferBuilder &_fbb, const GridSampleT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
struct ImageProcessParamT : public flatbuffers::NativeTable {
typedef ImageProcessParam TableType;
FilterType filterType;
ImageFormatType sourceFormat;
ImageFormatType destFormat;
WrapType wrap;
std::vector<float> mean;
std::vector<float> normal;
std::vector<float> transform;
int8_t paddingValue;
std::vector<int32_t> shape;
DataType outputType;
bool draw;
ImageProcessParamT()
: filterType(FilterType_NEAREST),
sourceFormat(ImageFormatType_RGBA),
destFormat(ImageFormatType_RGBA),
wrap(WrapType_CLAMP_TO_EDGE),
paddingValue(0),
outputType(DataType_DT_INVALID),
draw(false) {
}
};
struct ImageProcessParam FLATBUFFERS_FINAL_CLASS : private flatbuffers::Table {
typedef ImageProcessParamT NativeTableType;
static const flatbuffers::TypeTable *MiniReflectTypeTable() {
return ImageProcessParamTypeTable();
}
FilterType filterType() const {
return static_cast<FilterType>(GetField<int8_t>(4, 0));
}
ImageFormatType sourceFormat() const {
return static_cast<ImageFormatType>(GetField<int32_t>(6, 0));
}
ImageFormatType destFormat() const {
return static_cast<ImageFormatType>(GetField<int32_t>(8, 0));
}
WrapType wrap() const {
return static_cast<WrapType>(GetField<int8_t>(10, 0));
}
const flatbuffers::Vector<float> *mean() const {
return GetPointer<const flatbuffers::Vector<float> *>(12);
}
const flatbuffers::Vector<float> *normal() const {
return GetPointer<const flatbuffers::Vector<float> *>(14);
}
const flatbuffers::Vector<float> *transform() const {
return GetPointer<const flatbuffers::Vector<float> *>(16);
}
int8_t paddingValue() const {
return GetField<int8_t>(18, 0);
}
const flatbuffers::Vector<int32_t> *shape() const {
return GetPointer<const flatbuffers::Vector<int32_t> *>(20);
}
DataType outputType() const {
return static_cast<DataType>(GetField<int32_t>(22, 0));
}
bool draw() const {
return GetField<uint8_t>(24, 0) != 0;
}
bool Verify(flatbuffers::Verifier &verifier) const {
return VerifyTableStart(verifier) &&
VerifyField<int8_t>(verifier, 4) &&
VerifyField<int32_t>(verifier, 6) &&
VerifyField<int32_t>(verifier, 8) &&
VerifyField<int8_t>(verifier, 10) &&
VerifyOffset(verifier, 12) &&
verifier.VerifyVector(mean()) &&
VerifyOffset(verifier, 14) &&
verifier.VerifyVector(normal()) &&
VerifyOffset(verifier, 16) &&
verifier.VerifyVector(transform()) &&
VerifyField<int8_t>(verifier, 18) &&
VerifyOffset(verifier, 20) &&
verifier.VerifyVector(shape()) &&
VerifyField<int32_t>(verifier, 22) &&
VerifyField<uint8_t>(verifier, 24) &&
verifier.EndTable();
}
ImageProcessParamT *UnPack(const flatbuffers::resolver_function_t *_resolver = nullptr) const;
void UnPackTo(ImageProcessParamT *_o, const flatbuffers::resolver_function_t *_resolver = nullptr) const;
static flatbuffers::Offset<ImageProcessParam> Pack(flatbuffers::FlatBufferBuilder &_fbb, const ImageProcessParamT* _o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
};
struct ImageProcessParamBuilder {
flatbuffers::FlatBufferBuilder &fbb_;
flatbuffers::uoffset_t start_;
void add_filterType(FilterType filterType) {
fbb_.AddElement<int8_t>(4, static_cast<int8_t>(filterType), 0);
}
void add_sourceFormat(ImageFormatType sourceFormat) {
fbb_.AddElement<int32_t>(6, static_cast<int32_t>(sourceFormat), 0);
}
void add_destFormat(ImageFormatType destFormat) {
fbb_.AddElement<int32_t>(8, static_cast<int32_t>(destFormat), 0);
}
void add_wrap(WrapType wrap) {
fbb_.AddElement<int8_t>(10, static_cast<int8_t>(wrap), 0);
}
void add_mean(flatbuffers::Offset<flatbuffers::Vector<float>> mean) {
fbb_.AddOffset(12, mean);
}
void add_normal(flatbuffers::Offset<flatbuffers::Vector<float>> normal) {
fbb_.AddOffset(14, normal);
}
void add_transform(flatbuffers::Offset<flatbuffers::Vector<float>> transform) {
fbb_.AddOffset(16, transform);
}
void add_paddingValue(int8_t paddingValue) {
fbb_.AddElement<int8_t>(18, paddingValue, 0);
}
void add_shape(flatbuffers::Offset<flatbuffers::Vector<int32_t>> shape) {
fbb_.AddOffset(20, shape);
}
void add_outputType(DataType outputType) {
fbb_.AddElement<int32_t>(22, static_cast<int32_t>(outputType), 0);
}
void add_draw(bool draw) {
fbb_.AddElement<uint8_t>(24, static_cast<uint8_t>(draw), 0);
}
explicit ImageProcessParamBuilder(flatbuffers::FlatBufferBuilder &_fbb)
: fbb_(_fbb) {
start_ = fbb_.StartTable();
}
ImageProcessParamBuilder &operator=(const ImageProcessParamBuilder &);
flatbuffers::Offset<ImageProcessParam> Finish() {
const auto end = fbb_.EndTable(start_);
auto o = flatbuffers::Offset<ImageProcessParam>(end);
return o;
}
};
inline flatbuffers::Offset<ImageProcessParam> CreateImageProcessParam(
flatbuffers::FlatBufferBuilder &_fbb,
FilterType filterType = FilterType_NEAREST,
ImageFormatType sourceFormat = ImageFormatType_RGBA,
ImageFormatType destFormat = ImageFormatType_RGBA,
WrapType wrap = WrapType_CLAMP_TO_EDGE,
flatbuffers::Offset<flatbuffers::Vector<float>> mean = 0,
flatbuffers::Offset<flatbuffers::Vector<float>> normal = 0,
flatbuffers::Offset<flatbuffers::Vector<float>> transform = 0,
int8_t paddingValue = 0,
flatbuffers::Offset<flatbuffers::Vector<int32_t>> shape = 0,
DataType outputType = DataType_DT_INVALID,
bool draw = false) {
ImageProcessParamBuilder builder_(_fbb);
builder_.add_outputType(outputType);
builder_.add_shape(shape);
builder_.add_transform(transform);
builder_.add_normal(normal);
builder_.add_mean(mean);
builder_.add_destFormat(destFormat);
builder_.add_sourceFormat(sourceFormat);
builder_.add_draw(draw);
builder_.add_paddingValue(paddingValue);
builder_.add_wrap(wrap);
builder_.add_filterType(filterType);
return builder_.Finish();
}
flatbuffers::Offset<ImageProcessParam> CreateImageProcessParam(flatbuffers::FlatBufferBuilder &_fbb, const ImageProcessParamT *_o, const flatbuffers::rehasher_function_t *_rehasher = nullptr);
inline TensorConvertInfoT *TensorConvertInfo::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
auto _o = new TensorConvertInfoT();
UnPackTo(_o, _resolver);
return _o;
}
inline void TensorConvertInfo::UnPackTo(TensorConvertInfoT *_o, const flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = source(); _o->source = _e; };
{ auto _e = dest(); _o->dest = _e; };
}
inline flatbuffers::Offset<TensorConvertInfo> TensorConvertInfo::Pack(flatbuffers::FlatBufferBuilder &_fbb, const TensorConvertInfoT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
return CreateTensorConvertInfo(_fbb, _o, _rehasher);
}
inline flatbuffers::Offset<TensorConvertInfo> CreateTensorConvertInfo(flatbuffers::FlatBufferBuilder &_fbb, const TensorConvertInfoT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const TensorConvertInfoT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _source = _o->source;
auto _dest = _o->dest;
return MNN::CreateTensorConvertInfo(
_fbb,
_source,
_dest);
}
inline GridSampleT *GridSample::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
auto _o = new GridSampleT();
UnPackTo(_o, _resolver);
return _o;
}
inline void GridSample::UnPackTo(GridSampleT *_o, const flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = mode(); _o->mode = _e; };
{ auto _e = paddingMode(); _o->paddingMode = _e; };
{ auto _e = alignCorners(); _o->alignCorners = _e; };
{ auto _e = backward(); _o->backward = _e; };
}
inline flatbuffers::Offset<GridSample> GridSample::Pack(flatbuffers::FlatBufferBuilder &_fbb, const GridSampleT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
return CreateGridSample(_fbb, _o, _rehasher);
}
inline flatbuffers::Offset<GridSample> CreateGridSample(flatbuffers::FlatBufferBuilder &_fbb, const GridSampleT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const GridSampleT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _mode = _o->mode;
auto _paddingMode = _o->paddingMode;
auto _alignCorners = _o->alignCorners;
auto _backward = _o->backward;
return MNN::CreateGridSample(
_fbb,
_mode,
_paddingMode,
_alignCorners,
_backward);
}
inline ImageProcessParamT *ImageProcessParam::UnPack(const flatbuffers::resolver_function_t *_resolver) const {
auto _o = new ImageProcessParamT();
UnPackTo(_o, _resolver);
return _o;
}
inline void ImageProcessParam::UnPackTo(ImageProcessParamT *_o, const flatbuffers::resolver_function_t *_resolver) const {
(void)_o;
(void)_resolver;
{ auto _e = filterType(); _o->filterType = _e; };
{ auto _e = sourceFormat(); _o->sourceFormat = _e; };
{ auto _e = destFormat(); _o->destFormat = _e; };
{ auto _e = wrap(); _o->wrap = _e; };
{ auto _e = mean(); if (_e) { _o->mean.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->mean[_i] = _e->Get(_i); } } };
{ auto _e = normal(); if (_e) { _o->normal.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->normal[_i] = _e->Get(_i); } } };
{ auto _e = transform(); if (_e) { _o->transform.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->transform[_i] = _e->Get(_i); } } };
{ auto _e = paddingValue(); _o->paddingValue = _e; };
{ auto _e = shape(); if (_e) { _o->shape.resize(_e->size()); for (flatbuffers::uoffset_t _i = 0; _i < _e->size(); _i++) { _o->shape[_i] = _e->Get(_i); } } };
{ auto _e = outputType(); _o->outputType = _e; };
{ auto _e = draw(); _o->draw = _e; };
}
inline flatbuffers::Offset<ImageProcessParam> ImageProcessParam::Pack(flatbuffers::FlatBufferBuilder &_fbb, const ImageProcessParamT* _o, const flatbuffers::rehasher_function_t *_rehasher) {
return CreateImageProcessParam(_fbb, _o, _rehasher);
}
inline flatbuffers::Offset<ImageProcessParam> CreateImageProcessParam(flatbuffers::FlatBufferBuilder &_fbb, const ImageProcessParamT *_o, const flatbuffers::rehasher_function_t *_rehasher) {
(void)_rehasher;
(void)_o;
struct _VectorArgs { flatbuffers::FlatBufferBuilder *__fbb; const ImageProcessParamT* __o; const flatbuffers::rehasher_function_t *__rehasher; } _va = { &_fbb, _o, _rehasher}; (void)_va;
auto _filterType = _o->filterType;
auto _sourceFormat = _o->sourceFormat;
auto _destFormat = _o->destFormat;
auto _wrap = _o->wrap;
auto _mean = _o->mean.size() ? _fbb.CreateVector(_o->mean) : 0;
auto _normal = _o->normal.size() ? _fbb.CreateVector(_o->normal) : 0;
auto _transform = _o->transform.size() ? _fbb.CreateVector(_o->transform) : 0;
auto _paddingValue = _o->paddingValue;
auto _shape = _o->shape.size() ? _fbb.CreateVector(_o->shape) : 0;
auto _outputType = _o->outputType;
auto _draw = _o->draw;
return MNN::CreateImageProcessParam(
_fbb,
_filterType,
_sourceFormat,
_destFormat,
_wrap,
_mean,
_normal,
_transform,
_paddingValue,
_shape,
_outputType,
_draw);
}
inline const flatbuffers::TypeTable *SampleModeTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 }
};
static const flatbuffers::TypeFunction type_refs[] = {
SampleModeTypeTable
};
static const char * const names[] = {
"BILINEAR",
"NEAREST"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_ENUM, 2, type_codes, type_refs, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *BorderModeTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 }
};
static const flatbuffers::TypeFunction type_refs[] = {
BorderModeTypeTable
};
static const char * const names[] = {
"ZEROS",
"CLAMP",
"REFLECTION",
"CUBE"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_ENUM, 4, type_codes, type_refs, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *ImageFormatTypeTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 },
{ flatbuffers::ET_INT, 0, 0 }
};
static const flatbuffers::TypeFunction type_refs[] = {
ImageFormatTypeTypeTable
};
static const char * const names[] = {
"RGBA",
"RGB",
"BGR",
"GRAY",
"BGRA",
"YCrCb",
"YUV",
"HSV",
"XYZ",
"BGR555",
"BGR565",
"YUV_NV21",
"YUV_NV12",
"YUV_I420",
"HSV_FULL"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_ENUM, 15, type_codes, type_refs, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *FilterTypeTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 }
};
static const flatbuffers::TypeFunction type_refs[] = {
FilterTypeTypeTable
};
static const char * const names[] = {
"NEAREST",
"BILINEAR",
"BICUBIC"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_ENUM, 3, type_codes, type_refs, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *WrapTypeTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 }
};
static const flatbuffers::TypeFunction type_refs[] = {
WrapTypeTypeTable
};
static const char * const names[] = {
"CLAMP_TO_EDGE",
"ZERO",
"REPEAT"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_ENUM, 3, type_codes, type_refs, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *TensorConvertInfoTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 0 }
};
static const flatbuffers::TypeFunction type_refs[] = {
MNN_DATA_FORMATTypeTable
};
static const char * const names[] = {
"source",
"dest"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_TABLE, 2, type_codes, type_refs, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *GridSampleTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_CHAR, 0, 1 },
{ flatbuffers::ET_BOOL, 0, -1 },
{ flatbuffers::ET_BOOL, 0, -1 }
};
static const flatbuffers::TypeFunction type_refs[] = {
SampleModeTypeTable,
BorderModeTypeTable
};
static const char * const names[] = {
"mode",
"paddingMode",
"alignCorners",
"backward"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_TABLE, 4, type_codes, type_refs, nullptr, names
};
return &tt;
}
inline const flatbuffers::TypeTable *ImageProcessParamTypeTable() {
static const flatbuffers::TypeCode type_codes[] = {
{ flatbuffers::ET_CHAR, 0, 0 },
{ flatbuffers::ET_INT, 0, 1 },
{ flatbuffers::ET_INT, 0, 1 },
{ flatbuffers::ET_CHAR, 0, 2 },
{ flatbuffers::ET_FLOAT, 1, -1 },
{ flatbuffers::ET_FLOAT, 1, -1 },
{ flatbuffers::ET_FLOAT, 1, -1 },
{ flatbuffers::ET_CHAR, 0, -1 },
{ flatbuffers::ET_INT, 1, -1 },
{ flatbuffers::ET_INT, 0, 3 },
{ flatbuffers::ET_BOOL, 0, -1 }
};
static const flatbuffers::TypeFunction type_refs[] = {
FilterTypeTypeTable,
ImageFormatTypeTypeTable,
WrapTypeTypeTable,
DataTypeTypeTable
};
static const char * const names[] = {
"filterType",
"sourceFormat",
"destFormat",
"wrap",
"mean",
"normal",
"transform",
"paddingValue",
"shape",
"outputType",
"draw"
};
static const flatbuffers::TypeTable tt = {
flatbuffers::ST_TABLE, 11, type_codes, type_refs, nullptr, names
};
return &tt;
}
} // namespace MNN
#endif // FLATBUFFERS_GENERATED_USERDEFINE_MNN_H_