MNN/source/backend/hiai/execution/NPUBatchMatMul.cpp

93 lines
3.6 KiB
C++

//
// NPUBatchMatMul.cpp
// MNN
//
// Created by MNN on b'2020/10/15'.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "NPUBatchMatMul.hpp"
#include "NPUBackend.hpp"
using namespace std;
namespace MNN {
NPUBatchMatMul::NPUBatchMatMul(MNN::Backend *b, const MNN::Op *op, const std::vector<Tensor *> &inputs, const std::vector<MNN::Tensor *> &outputs) : NPUCommonExecution(b, op) {
auto opName = mOp->name()->str();
bool isConst0 = TensorUtils::getDescribe(inputs[0])->usage==Tensor::InsideDescribe::Usage::CONSTANT;
bool isConst1 = TensorUtils::getDescribe(inputs[1])->usage==Tensor::InsideDescribe::Usage::CONSTANT;
Tensor* input = nullptr;
if (isConst0 && !isConst1){
input = inputs[0];
}
if (!isConst0 && isConst1){
input = inputs[1];
}
if (input != nullptr) {
mConst = ge::op::Const(opName + "_w_const");
ge::TensorPtr filter = std::make_shared<ge::Tensor>();
vector<int64_t> dims;
for (int32_t i = 0; i < input->buffer().dimensions; i++) {
dims.push_back(input->buffer().dim[i].extent);
}
ge::TensorDesc fdesc(ge::Shape(dims), ge::FORMAT_NCHW, ge::DT_FLOAT);
if (input->getType().code == halide_type_int && input->getType().bits == 32) {
fdesc.SetDataType(ge::DT_INT32);
filter->SetData((uint8_t *)input->host<int32_t>(), input->elementSize() * sizeof(int32_t));
} else {
filter->SetData((uint8_t *)input->host<float>(), input->elementSize() * sizeof(float));
}
filter->SetTensorDesc(fdesc);
mConst.set_attr_value(filter);
}
}
ErrorCode NPUBatchMatMul::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mNpuBackend->setNetworkInput(inputs, mOp);
auto opName = mOp->name()->str();
bool isConst0 = TensorUtils::getDescribe(inputs[0])->usage==Tensor::InsideDescribe::Usage::CONSTANT;
bool isConst1 = TensorUtils::getDescribe(inputs[1])->usage==Tensor::InsideDescribe::Usage::CONSTANT;
auto param = mOp->main_as_BatchMatMulParam();
shared_ptr<hiai::op::BatchMatMul> batchMatMul(new hiai::op::BatchMatMul(opName));
if (isConst0 && !isConst1) {
auto inputIndex1 = mOp->inputIndexes()->data()[1];
auto iops1 = mNpuBackend->mGrapMap[inputIndex1];
auto xOp1 = iops1.back().first;
(*batchMatMul)
.set_input_x1(mConst)
.set_input_x2(*xOp1.get())
.set_attr_adj_x1(param->adjX())
.set_attr_adj_x2(param->adjY());
} else if (!isConst0 && isConst1) {
auto inputIndex = mOp->inputIndexes()->data()[0];
auto iops = mNpuBackend->mGrapMap[inputIndex];
auto xOp = iops.back().first;
(*batchMatMul)
.set_input_x1(*xOp.get())
.set_input_x2(mConst)
.set_attr_adj_x1(param->adjX())
.set_attr_adj_x2(param->adjY());
} else {
auto inputIndex = mOp->inputIndexes()->data()[0];
auto iops = mNpuBackend->mGrapMap[inputIndex];
auto xOp = iops.back().first;
auto inputIndex1 = mOp->inputIndexes()->data()[1];
auto iops1 = mNpuBackend->mGrapMap[inputIndex1];
auto xOp1 = iops1.back().first;
(*batchMatMul)
.set_input_x1(*xOp.get())
.set_input_x2(*xOp1.get())
.set_attr_adj_x1(param->adjX())
.set_attr_adj_x2(param->adjY());
}
mNpuBackend->setOutputOps(mOp, {batchMatMul}, outputs);
return NO_ERROR;
}
NPUCreatorRegister<TypedCreator<NPUBatchMatMul>> __BatchMatMul_op(OpType_BatchMatMul);
} // namespace MNN