MNN/source/backend/hiai/execution/NPUInstanceNorm.cpp

54 lines
1.8 KiB
C++

//
// NPUInstanceNorm.cpp
// MNN
//
// Created by MNN on b'2020/10/15'.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "NPUInstanceNorm.hpp"
#include "NPUBackend.hpp"
using namespace std;
namespace MNN {
NPUInstanceNorm::NPUInstanceNorm(MNN::Backend *b, const MNN::Op *op, const std::vector<Tensor *> &inputs, const std::vector<MNN::Tensor *> &outputs) : NPUCommonExecution(b, op) {}
ErrorCode NPUInstanceNorm::onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mNpuBackend->setNetworkInput(inputs, mOp);
auto xOp = mNpuBackend->getInputOps(mOp);
auto opName = mOp->name()->str();
auto slope = mOp->main_as_BatchNorm()->slopeData();
mScale = hiai::op::Const(opName + "_scale");
{
ge::TensorDesc fdesc(ge::Shape({1,slope->size(),1,1}),ge::DT_FLOAT);
ge::TensorPtr filter = std::make_shared<ge::Tensor>();
filter->SetTensorDesc(fdesc);
filter->SetData((uint8_t *)slope->data(), slope->size() * sizeof(float));
mScale.set_attr_value(filter);
}
auto bias = mOp->main_as_BatchNorm()->biasData();
mBias = hiai::op::Const(opName + "_bias");
{
ge::TensorDesc fdesc(ge::Shape({1,bias->size(),1,1}),ge::DT_FLOAT);
ge::TensorPtr filter = std::make_shared<ge::Tensor>();
filter->SetTensorDesc(fdesc);
filter->SetData((uint8_t *)bias->data(), bias->size() * sizeof(float));
mBias.set_attr_value(filter);
}
shared_ptr<hiai::op::InstanceNorm> insNorm(new hiai::op::InstanceNorm(opName));
(*insNorm).set_input_x(*xOp.get())
.set_input_gamma(mScale)
.set_input_beta(mBias);
mNpuBackend->setOutputOps(mOp, {insNorm}, outputs);
return NO_ERROR;
}
NPUCreatorRegister<TypedCreator<NPUInstanceNorm>> __instanceNorm_op(OpType_InstanceNorm);
} // namespace MNN