mirror of https://github.com/alibaba/MNN.git
143 lines
4.8 KiB
C++
143 lines
4.8 KiB
C++
//
|
|
// VulkanLayernorm.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/31.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "VulkanLayernorm.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
|
|
struct Param {
|
|
ivec4 size;
|
|
vec4 eps;
|
|
};
|
|
|
|
VulkanLayernorm::VulkanLayernorm(const Op* op, Backend* backend) : VulkanBasicExecution(backend) {
|
|
auto layer_norm_param = op->main_as_LayerNorm();
|
|
auto vkbackend = static_cast<VulkanBackend*>(backend);
|
|
if (nullptr != layer_norm_param->axis()) {
|
|
mAxisSize = layer_norm_param->axis()->size();
|
|
}
|
|
mGroup = layer_norm_param->group();
|
|
|
|
mParam = vkbackend->allocUniform();
|
|
mEps = layer_norm_param->epsilon();
|
|
|
|
if (layer_norm_param->gamma() && layer_norm_param->beta()) {
|
|
mHasScale = true;
|
|
int size = layer_norm_param->gamma()->size();
|
|
mGamma.reset(Tensor::createDevice<float>({size}));
|
|
auto status = backend->onAcquireBuffer(mGamma.get(), Backend::STATIC);
|
|
if (!status) {
|
|
MNN_ERROR("Out of memory when gamma is acquired in LayerNorm.\n");
|
|
return;
|
|
}
|
|
const float* gamma_data = layer_norm_param->gamma()->data();
|
|
auto gammaBuffer = vkbackend->getBuffer(mGamma.get());
|
|
vkbackend->copyToGPUBuffer(gamma_data, std::get<0>(gammaBuffer), std::get<1>(gammaBuffer), std::get<2>(gammaBuffer));
|
|
|
|
if (layer_norm_param->beta()->size() != size) {
|
|
MNN_ERROR("Size of gamma and beta are not match in LayerNorm.\n");
|
|
return;
|
|
}
|
|
mBias.reset(Tensor::createDevice<float>({size}));
|
|
status = backend->onAcquireBuffer(mBias.get(), Backend::STATIC);
|
|
if (!status) {
|
|
MNN_ERROR("Out of memory when beta is acquired in LayerNorm.\n");
|
|
return;
|
|
}
|
|
const float* beta_data = layer_norm_param->beta()->data();
|
|
auto betaBuffer = vkbackend->getBuffer(mBias.get());
|
|
vkbackend->copyToGPUBuffer(beta_data, std::get<0>(betaBuffer), std::get<1>(betaBuffer), std::get<2>(betaBuffer));
|
|
}
|
|
|
|
if (!mHasScale) {
|
|
auto types = {
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
};
|
|
mPipeline = vkbackend->getPipeline("glsl_norm_comp", types);
|
|
} else {
|
|
auto types = {
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
};
|
|
mPipeline = vkbackend->getPipeline("glsl_norm_LAYERNORM_SCALE_comp", types);
|
|
}
|
|
mDesSet.reset(mPipeline->createSet());
|
|
}
|
|
|
|
VulkanLayernorm::~VulkanLayernorm() {
|
|
auto vkbackend = static_cast<VulkanBackend*>(backend());
|
|
vkbackend->recycleUniform(mParam);
|
|
}
|
|
|
|
|
|
ErrorCode VulkanLayernorm::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const VulkanCommandPool::Buffer* cmdBuffer) {
|
|
// set param
|
|
auto vkBn = (VulkanBackend*)backend();
|
|
auto outside = 1;
|
|
auto inside = 1;
|
|
int rank = inputs.at(0)->dimensions();
|
|
if (mGroup > 1) {
|
|
outside = inputs.at(0)->length(0) * mGroup;
|
|
for (int i = 1; i < rank; i++) {
|
|
inside *= inputs.at(0)->length(i);
|
|
}
|
|
inside /= mGroup;
|
|
}
|
|
for (int i = 0; i < rank - mAxisSize; ++i) {
|
|
outside *= inputs.at(0)->length(i);
|
|
}
|
|
for (int i = rank - mAxisSize; i < rank; ++i) {
|
|
inside *= inputs.at(0)->length(i);
|
|
}
|
|
auto param = reinterpret_cast<Param*>(mParam->map());
|
|
param->size[0] = inside;
|
|
param->size[1] = outside;
|
|
param->size[2] = 1;
|
|
param->size[3] = outside;
|
|
param->eps[0] = mEps;
|
|
param->eps[1] = mEps;
|
|
param->eps[2] = mEps;
|
|
param->eps[3] = mEps;
|
|
mParam->unmap();
|
|
auto inputTensor = vkBn->getBuffer(inputs[0]);
|
|
auto outputTensor = vkBn->getBuffer(outputs[0]);
|
|
mDesSet->writeBuffer(outputTensor, 0);
|
|
mDesSet->writeBuffer(inputTensor, 1);
|
|
mDesSet->writeBuffer(mParam->buffer(), 2, mParam->size());
|
|
if (mHasScale) {
|
|
mDesSet->writeBuffer(vkBn->getBuffer(mGamma.get()), 3);
|
|
mDesSet->writeBuffer(vkBn->getBuffer(mBias.get()), 4);
|
|
}
|
|
mPipeline->bind(cmdBuffer->get(), mDesSet->get());
|
|
vkCmdDispatch(cmdBuffer->get(), UP_DIV(outside, 64), 1, 1);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class VulkanLayernormCreator : public VulkanBackend::Creator {
|
|
public:
|
|
virtual VulkanBasicExecution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op, Backend* bn) const override {
|
|
return new VulkanLayernorm(op, bn);
|
|
}
|
|
};
|
|
|
|
static bool gResistor = []() {
|
|
VulkanBackend::addCreator(OpType_LayerNorm, new VulkanLayernormCreator);
|
|
return true;
|
|
}();
|
|
|
|
} // namespace MNN
|