mirror of https://github.com/alibaba/MNN.git
123 lines
4.9 KiB
C++
123 lines
4.9 KiB
C++
//
|
|
// VulkanSoftmax.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/01/31.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "VulkanSoftmax.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
|
|
struct ConstBuffer {
|
|
int w;
|
|
int h;
|
|
int c;
|
|
};
|
|
|
|
VulkanSoftmax::VulkanSoftmax(const Op* op, Backend* bn) : VulkanBasicExecution(bn) {
|
|
const auto softmaxParam = op->main_as_Axis();
|
|
mAxis = softmaxParam->axis();
|
|
auto vkBn = (VulkanBackend*)backend();
|
|
mConstBuffer = std::make_shared<VulkanBuffer>(vkBn->getMemoryPool(), false, sizeof(ConstBuffer), nullptr,
|
|
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT);
|
|
std::vector<VkDescriptorType> types{
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
|
|
VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER
|
|
};
|
|
mSoftmaxPipeline =
|
|
vkBn->getPipeline("glsl_softmaxHeight_NHWC_comp", types);
|
|
mDescriptorSet.reset(mSoftmaxPipeline->createSet());
|
|
}
|
|
|
|
VulkanSoftmax::~VulkanSoftmax() {
|
|
}
|
|
|
|
ErrorCode VulkanSoftmax::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
|
|
const VulkanCommandPool::Buffer* cmdBuffer) {
|
|
auto input = inputs[0];
|
|
auto output = outputs[0];
|
|
auto extra = (VulkanBackend*)backend();
|
|
auto inputFormat = TensorUtils::getDescribe(input)->dimensionFormat;
|
|
auto axis = mAxis;
|
|
if (axis < 0) {
|
|
axis = input->dimensions() + axis;
|
|
}
|
|
if (inputFormat == MNN_DATA_FORMAT_NC4HW4) {
|
|
mConvert.reset(new ConvertComponent);
|
|
mConvert->mTempInputTensor.reset(new Tensor(input, Tensor::CAFFE, false));
|
|
mConvert->mTempOutputTensor.reset(new Tensor(output, Tensor::CAFFE, false));
|
|
auto res = backend()->onAcquireBuffer(mConvert->mTempInputTensor.get(), Backend::DYNAMIC);
|
|
if (!res) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
res = backend()->onAcquireBuffer(mConvert->mTempOutputTensor.get(), Backend::DYNAMIC);
|
|
if (!res) {
|
|
return OUT_OF_MEMORY;
|
|
}
|
|
mConvert->mInputConvert = VulkanRaster::create(mConvert->mTempInputTensor.get(), backend());
|
|
mConvert->mOutputConvert = VulkanRaster::create(mConvert->mTempOutputTensor.get(), backend());
|
|
TensorUtils::getDescribe(mConvert->mTempInputTensor.get())->regions = {TensorUtils::makeFullSlice(inputs[0])};
|
|
TensorUtils::getDescribe(outputs[0])->regions = {TensorUtils::makeFullSlice(mConvert->mTempOutputTensor.get())};
|
|
input = mConvert->mTempInputTensor.get();
|
|
output = mConvert->mTempOutputTensor.get();
|
|
|
|
mConvert->mInputConvert.exe->onEncode({}, {mConvert->mTempInputTensor.get()}, cmdBuffer);
|
|
auto inputBuffer = extra->getTensorBuffer(input);
|
|
auto inputBufferSize = extra->getTensorSize(input);
|
|
cmdBuffer->barrierSource(inputBuffer.first->buffer(), inputBuffer.second, inputBufferSize);
|
|
}
|
|
int inside = 1;
|
|
int outside = 1;
|
|
int mid = input->length(axis);
|
|
for (int i=0; i<axis; ++i) {
|
|
outside *= input->length(i);
|
|
}
|
|
for (int i=axis+1; i<output->dimensions(); ++i) {
|
|
inside *= input->length(i);
|
|
}
|
|
// gpu param
|
|
{
|
|
auto softmax = reinterpret_cast<ConstBuffer*>(mConstBuffer->map());
|
|
::memset(softmax, 0, sizeof(ConstBuffer));
|
|
softmax->w = inside;
|
|
softmax->h = mid;
|
|
softmax->c = outside;
|
|
mConstBuffer->unmap();
|
|
}
|
|
auto outputBuffer = extra->getTensorBuffer(output);
|
|
auto inputBuffer = extra->getTensorBuffer(input);
|
|
mDescriptorSet->writeBuffer(outputBuffer.first->buffer(), 0, extra->getTensorSize(output), outputBuffer.second);
|
|
mDescriptorSet->writeBuffer(inputBuffer.first->buffer(), 1, extra->getTensorSize(input), inputBuffer.second);
|
|
mDescriptorSet->writeBuffer(mConstBuffer->buffer(), 2, mConstBuffer->size());
|
|
mSoftmaxPipeline->bind(cmdBuffer->get(), mDescriptorSet->get());
|
|
vkCmdDispatch(cmdBuffer->get(), UP_DIV(outside, 8), UP_DIV(inside, 8), 1);
|
|
if (inputFormat == MNN_DATA_FORMAT_NC4HW4) {
|
|
cmdBuffer->barrierSource(outputBuffer.first->buffer(), outputBuffer.second, extra->getTensorSize(output));
|
|
mConvert->mOutputConvert.exe->onEncode({}, {outputs[0]}, cmdBuffer);
|
|
backend()->onReleaseBuffer(mConvert->mTempInputTensor.get(), Backend::DYNAMIC);
|
|
backend()->onReleaseBuffer(mConvert->mTempOutputTensor.get(), Backend::DYNAMIC);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class VulkanSoftmaxCreator : public VulkanBackend::Creator {
|
|
public:
|
|
virtual VulkanBasicExecution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op,
|
|
Backend* backend) const override {
|
|
return new VulkanSoftmax(op, backend);
|
|
}
|
|
};
|
|
|
|
static bool gResistor = []() {
|
|
VulkanBackend::addCreator(OpType_Softmax, new VulkanSoftmaxCreator);
|
|
return true;
|
|
}();
|
|
|
|
} // namespace MNN
|