MNN/source/shape/ShapeQuantizedAvgPool.cpp

64 lines
2.5 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//
// ShapeQuantizedAvgPool.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "shape/SizeComputer.hpp"
#ifdef MNN_SUPPORT_DEPRECATED_OP
#include "core/Macro.h"
namespace MNN {
class QuantizedAvgPoolComputer : public SizeComputer {
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
auto layer = op->main_as_QuantizedAvgPool();
MNN_ASSERT(layer->strideX() == layer->strideY());
int kernel_width = layer->kernelX();
int kernel_height = layer->kernelY();
int output_width = 1;
int output_height = 1;
auto input = inputs[0];
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
output_width = ceil((float)input->width() / (float)layer->strideX()); // NHWC for tensorflow
output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
output_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
} else {
MNN_ASSERT(false); // unsupported type
}
// outputNHWC MNN: nchw
auto& outputBuffer = outputs[0]->buffer();
outputBuffer.dimensions = input->buffer().dimensions;
outputs[0]->setType(DataType_DT_UINT8);
auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
outputBuffer.dim[2].extent = output_height;
outputBuffer.dim[3].extent = output_width;
outputBuffer.dim[1].extent = input->buffer().dim[1].extent;
if (format == MNN_DATA_FORMAT_NHWC) {
outputBuffer.dim[1].extent = output_height;
outputBuffer.dim[2].extent = output_width;
outputBuffer.dim[3].extent = input->channel();
}
TensorUtils::getDescribe(outputs[0])->dimensionFormat = format;
return true;
}
};
} // namespace MNN
#endif
namespace MNN {
REGISTER_SHAPE_OLD(QuantizedAvgPoolComputer, OpType_QuantizedAvgPool);
};