mirror of https://github.com/alibaba/MNN.git
64 lines
2.5 KiB
C++
64 lines
2.5 KiB
C++
//
|
||
// ShapeQuantizedAvgPool.cpp
|
||
// MNN
|
||
//
|
||
// Created by MNN on 2019/01/10.
|
||
// Copyright © 2018, Alibaba Group Holding Limited
|
||
//
|
||
#include <math.h>
|
||
#include "shape/SizeComputer.hpp"
|
||
#ifdef MNN_SUPPORT_DEPRECATED_OP
|
||
#include "core/Macro.h"
|
||
|
||
namespace MNN {
|
||
class QuantizedAvgPoolComputer : public SizeComputer {
|
||
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
|
||
const std::vector<Tensor*>& outputs) const override {
|
||
auto layer = op->main_as_QuantizedAvgPool();
|
||
|
||
MNN_ASSERT(layer->strideX() == layer->strideY());
|
||
|
||
int kernel_width = layer->kernelX();
|
||
int kernel_height = layer->kernelY();
|
||
|
||
int output_width = 1;
|
||
int output_height = 1;
|
||
|
||
auto input = inputs[0];
|
||
|
||
if (layer->padType() == PoolPadType_SAME) { // Tensorflow padding mode SAME
|
||
output_width = ceil((float)input->width() / (float)layer->strideX()); // NHWC for tensorflow
|
||
output_height = ceil((float)input->height() / (float)layer->strideY()); // the default layout is NCHW
|
||
} else if (layer->padType() == PoolPadType_VALID) { // Tensorflow padding mode VALID
|
||
output_width = ceil((float)(input->width() - kernel_width + 1) / (float)layer->strideX());
|
||
output_height = ceil((float)(input->height() - kernel_height + 1) / (float)layer->strideY());
|
||
} else {
|
||
MNN_ASSERT(false); // unsupported type
|
||
}
|
||
|
||
// output:NHWC MNN: nchw
|
||
auto& outputBuffer = outputs[0]->buffer();
|
||
outputBuffer.dimensions = input->buffer().dimensions;
|
||
outputs[0]->setType(DataType_DT_UINT8);
|
||
auto format = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
|
||
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
|
||
outputBuffer.dim[2].extent = output_height;
|
||
outputBuffer.dim[3].extent = output_width;
|
||
outputBuffer.dim[1].extent = input->buffer().dim[1].extent;
|
||
if (format == MNN_DATA_FORMAT_NHWC) {
|
||
outputBuffer.dim[1].extent = output_height;
|
||
outputBuffer.dim[2].extent = output_width;
|
||
outputBuffer.dim[3].extent = input->channel();
|
||
}
|
||
TensorUtils::getDescribe(outputs[0])->dimensionFormat = format;
|
||
|
||
return true;
|
||
}
|
||
};
|
||
|
||
} // namespace MNN
|
||
#endif
|
||
namespace MNN {
|
||
REGISTER_SHAPE_OLD(QuantizedAvgPoolComputer, OpType_QuantizedAvgPool);
|
||
};
|