MNN/test/model/MobileNetTest.cpp

239 lines
7.9 KiB
C++

//
// MobileNetTest.cpp
// MNNTests
//
// Created by MNN on 2019/01/29.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef __APPLE__
#include <CoreFoundation/CoreFoundation.h>
#endif
#include <MNN/Interpreter.hpp>
#include <fstream>
#include "MNNTestSuite.h"
#include "TestUtils.h"
#include "core/Session.hpp"
#include "core/TensorUtils.hpp"
using namespace MNN;
class MobileNetTest : public MNNTestCase {
public:
virtual ~MobileNetTest() = default;
std::string root() {
#ifdef __APPLE__
auto bundle = CFBundleGetMainBundle();
auto url = CFBundleCopyBundleURL(bundle);
auto string = CFURLCopyFileSystemPath(url, kCFURLPOSIXPathStyle);
CFRelease(url);
auto cstring = CFStringGetCStringPtr(string, kCFStringEncodingUTF8);
auto res = std::string(cstring);
CFRelease(string);
return res;
#else
return "../resource"; // assume run in build dir
#endif
}
std::string path() {
return this->root() + "/model/MobileNet";
}
virtual std::string model() = 0;
virtual std::string input() = 0;
virtual std::string expect() = 0;
virtual MNN::Tensor::DimensionType dimensionType() = 0;
std::shared_ptr<Tensor> tensorFromFile(const Tensor* shape, std::string file) {
std::shared_ptr<Tensor> result(new Tensor(shape, this->dimensionType()));
std::ifstream stream(file.c_str());
auto type = shape->getType();
if (type.code == halide_type_float) {
auto data = result->host<float>();
auto size = result->elementSize();
for (int i = 0; i < size; ++i) {
stream >> data[i];
}
} else if (type.code == halide_type_int && type.bytes() == 4) {
auto data = result->host<int32_t>();
auto size = result->elementSize();
for (int i = 0; i < size; ++i) {
stream >> data[i];
}
} else if (type.code == halide_type_uint && type.bytes() == 1) {
auto data = result->host<uint8_t>();
auto size = result->elementSize();
for (int i = 0; i < size; ++i) {
int v = 0;
stream >> v;
data[i] = (uint8_t)v;
}
}
return result;
}
void input(Session* session, std::string file) {
auto input = session->getInput(NULL);
auto given = tensorFromFile(input, file);
input->copyFromHostTensor(given.get());
}
virtual bool run(int precision) {
auto net = MNN::Interpreter::createFromFile(this->model().c_str());
if (NULL == net) {
return false;
}
ScheduleConfig cpuconfig;
cpuconfig.type = MNN_FORWARD_CPU;
auto CPU = net->createSession(cpuconfig);
auto input = tensorFromFile(net->getSessionInput(CPU, NULL), this->input());
auto expect = tensorFromFile(net->getSessionOutput(CPU, NULL), this->expect());
dispatch([&](MNNForwardType backend) -> void {
ScheduleConfig config;
config.type = MNN_FORWARD_METAL;
config.numThread = 1;
MNN::BackendConfig backendConfig;
backendConfig.precision = MNN::BackendConfig::Precision_High;
config.backendConfig = &backendConfig;
auto session = net->createSession(config);
auto outputTensor = net->getSessionOutput(session, NULL);
auto inputTensor = net->getSessionInput(session, NULL);
std::shared_ptr<MNN::Tensor> hostTensor(MNN::Tensor::createHostTensorFromDevice(outputTensor, false));
for(int i=0; i<20; i++)//warmm up
{
auto timeBegin = getTimeInUs();
inputTensor->copyFromHostTensor(input.get());
net->runSession(session);
outputTensor->copyToHostTensor(hostTensor.get());
auto timeEnd = getTimeInUs();
printf("run cost %f ms\n", ((timeEnd - timeBegin) / 1000.0));
}
float tolerance = backend == MNN_FORWARD_CPU ? 0.04 : 0.1;
assert(TensorUtils::compareTensors(hostTensor.get(), expect.get(), tolerance, true));
});
delete net;
return true;
}
};
class MobileNetV1Test : public MobileNetTest {
virtual ~MobileNetV1Test() = default;
virtual std::string model() override {
return this->path() + "/v1/mobilenet_v1.caffe.mnn";
}
virtual std::string input() override {
return this->path() + "/flt_input.txt";
}
virtual std::string expect() override {
return this->path() + "/v1/expect.txt";
}
virtual MNN::Tensor::DimensionType dimensionType() override {
return MNN::Tensor::CAFFE;
}
};
class MobileNetV2Test : public MobileNetTest {
virtual ~MobileNetV2Test() = default;
virtual std::string model() override {
return this->path() + "/v2/mobilenet_v2.caffe.mnn";
}
virtual std::string input() override {
return this->path() + "/flt_input.txt";
}
virtual std::string expect() override {
return this->path() + "/v2/expect_caffe.txt";
}
virtual MNN::Tensor::DimensionType dimensionType() override {
return MNN::Tensor::CAFFE;
}
};
class MobileNetV2TFLiteTest : public MobileNetTest {
virtual ~MobileNetV2TFLiteTest() = default;
virtual std::string model() override {
return this->path() + "/v2/mobilenet_v2_1.0_224.tflite.mnn";
}
virtual std::string input() override {
return this->path() + "/flt_input.txt";
}
virtual std::string expect() override {
return this->path() + "/v2/expect_tflite.txt";
}
virtual MNN::Tensor::DimensionType dimensionType() override {
return MNN::Tensor::TENSORFLOW;
}
};
class MobileNetV2TFLiteQntTest : public MobileNetTest {
virtual ~MobileNetV2TFLiteQntTest() = default;
virtual std::string model() override {
return this->path() + "/v2/mobilenet_v2_1.0_224_quant.tflite.mnn";
}
virtual std::string input() override {
return this->path() + "/qnt_input.txt";
}
virtual std::string expect() override {
return this->path() + "/v2/expect_tflite_qnt.txt";
}
virtual MNN::Tensor::DimensionType dimensionType() override {
return MNN::Tensor::TENSORFLOW;
}
};
MNNTestSuiteRegister(MobileNetV1Test, "model/mobilenet/1/caffe");
MNNTestSuiteRegister(MobileNetV2Test, "model/mobilenet/2/caffe");
MNNTestSuiteRegister(MobileNetV2TFLiteTest, "model/mobilenet/2/tflite");
MNNTestSuiteRegister(MobileNetV2TFLiteQntTest, "model/mobilenet/2/tflite_qnt");
class ModelTest : public MNNTestCase {
public:
virtual ~ModelTest() = default;
std::string root() {
#ifdef __APPLE__
auto bundle = CFBundleGetMainBundle();
auto url = CFBundleCopyBundleURL(bundle);
auto string = CFURLCopyFileSystemPath(url, kCFURLPOSIXPathStyle);
CFRelease(url);
auto cstring = CFStringGetCStringPtr(string, kCFStringEncodingUTF8);
auto res = std::string(cstring);
CFRelease(string);
return res;
#else
return "../resource"; // assume run in build dir
#endif
}
std::string path() {
return this->root() + "/model/temp.bin";
}
virtual bool run(int precision) {
auto net = MNN::Interpreter::createFromFile(this->path().c_str());
if (NULL == net) {
return false;
}
ScheduleConfig cpuconfig;
cpuconfig.type = MNN_FORWARD_CPU;
BackendConfig bnConfig;
bnConfig.precision = BackendConfig::Precision_Low;
cpuconfig.backendConfig = &bnConfig;
auto session = net->createSession(cpuconfig);
net->runSession(session);
delete net;
return true;
}
};
MNNTestSuiteRegister(ModelTest, "model/model_test");