MNN/test/model/SqueezeNetTest.cpp

116 lines
3.6 KiB
C++

//
// SqueezeNetTest.cpp
// MNNTests
//
// Created by MNN on 2019/01/29.
// Copyright © 2018, Alibaba Group Holding Limited
//
#ifdef __APPLE__
#include <CoreFoundation/CoreFoundation.h>
#endif
#include <MNN/Interpreter.hpp>
#include <fstream>
#include "MNNTestSuite.h"
#include "TestUtils.h"
#include "core/Session.hpp"
#include "core/TensorUtils.hpp"
using namespace MNN;
class SqueezeNetTest : public MNNTestCase {
public:
virtual ~SqueezeNetTest() = default;
std::string root() {
#ifdef __APPLE__
auto bundle = CFBundleGetMainBundle();
auto url = CFBundleCopyBundleURL(bundle);
auto string = CFURLCopyFileSystemPath(url, kCFURLPOSIXPathStyle);
CFRelease(url);
auto cstring = CFStringGetCStringPtr(string, kCFStringEncodingUTF8);
auto css = std::string(cstring);
CFRelease(string);
return css;
#else
return "../resource"; // assume run in build dir
#endif
}
std::string path() {
return this->root() + "/model/SqueezeNet";
}
virtual std::string model() = 0;
virtual std::string input() {
return this->path() + "/input.txt";
}
virtual std::string expect() = 0;
std::shared_ptr<Tensor> tensorFromFile(const Tensor* shape, std::string file) {
std::shared_ptr<Tensor> result(new Tensor(shape, MNN::Tensor::CAFFE));
std::ifstream stream(file.c_str());
auto data = result->host<float>();
auto size = result->elementSize();
for (int i = 0; i < size; ++i) {
stream >> data[i];
}
return result;
}
void input(Session* session, std::string file) {
auto input = session->getInput(NULL);
auto given = tensorFromFile(input, file);
input->copyFromHostTensor(given.get());
}
virtual bool run(int precision) {
auto net = MNN::Interpreter::createFromFile(this->model().c_str());
if (NULL == net) {
return false;
}
ScheduleConfig cpuconfig;
cpuconfig.type = MNN_FORWARD_CPU;
auto CPU = net->createSession(cpuconfig);
auto input = tensorFromFile(net->getSessionInput(CPU, NULL), this->input());
auto expect = tensorFromFile(net->getSessionOutput(CPU, NULL), this->expect());
dispatch([&](MNNForwardType backend) -> void {
ScheduleConfig config;
config.type = backend;
auto session = net->createSession(config);
net->getSessionInput(session, NULL)->copyFromHostTensor(input.get());
net->runSession(session);
auto output = net->getSessionOutput(session, NULL);
float tolerance = backend == MNN_FORWARD_CPU ? 0.01 : 0.1;
assert(TensorUtils::compareTensors(output, expect.get(), tolerance, true));
});
delete net;
return true;
}
};
class SqueezeNetV1_0Test : public SqueezeNetTest {
virtual ~SqueezeNetV1_0Test() = default;
virtual std::string model() {
return this->path() + "/v1.0/squeezenet_v1.0.caffe.mnn";
}
virtual std::string expect() {
return this->path() + "/v1.0/expect.txt";
}
};
class SqueezeNetV1_1Test : public SqueezeNetTest {
virtual ~SqueezeNetV1_1Test() = default;
virtual std::string model() override {
return this->path() + "/v1.1/squeezenet_v1.1.caffe.mnn";
}
virtual std::string expect() override {
return this->path() + "/v1.1/expect.txt";
}
};
MNNTestSuiteRegister(SqueezeNetV1_0Test, "model/squeezenet/1.0");
MNNTestSuiteRegister(SqueezeNetV1_1Test, "model/squeezenet/1.1");