MNN/test/op/CropTest.cpp

61 lines
2.5 KiB
C++

//
// CropTest.cpp
// MNNTests
//
// Created by MNN on 2019/01/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <MNN/expr/Expr.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include "MNNTestSuite.h"
#include "TestUtils.h"
using namespace MNN::Express;
class CropTest : public MNNTestCase {
public:
virtual ~CropTest() = default;
virtual bool run(int precision) {
{
// Simple
auto input = _Input({1, 1, 4, 4}, NCHW);
input->setName("input_tensor");
// set input data
const float inpudata[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0};
auto inputPtr = input->writeMap<float>();
memcpy(inputPtr, inpudata, 16 * sizeof(float));
input->unMap();
const float size_data[] = {0.0, 0.0, 0.0, 0.0};
auto size = _Const(size_data, {1, 1, 2, 2}, NCHW);
input = _Convert(input, NC4HW4);
auto output = _Crop(input, size, 2, {1, 1});
output = _Convert(output, NCHW);
const std::vector<float> expectedOutput = {6.0, 7.0, 10.0, 11.0};
auto gotOutput = output->readMap<float>();
if (!checkVector<float>(gotOutput, expectedOutput.data(), 4, 0.01)) {
MNN_ERROR("CropTest test failed!\n");
return false;
}
const std::vector<int> expectedDim = {1, 1, 2, 2};
auto gotDim = output->getInfo()->dim;
if (!checkVector<int>(gotDim.data(), expectedDim.data(), 4, 0)) {
MNN_ERROR("CropTest test failed!\n");
return false;
}
}
{
auto input = _Input({1, 3, 640, 360}, NC4HW4);
input->setName("input_tensor");
// set input data
auto inputPtr = input->writeMap<float>();
input->unMap();
const float size_data[] = {0.0, 0.0, 0.0, 0.0};
auto size = _Const(0.0f, {1, 3, 640, 352}, NCHW);
auto output = _Crop(input, size, 2, {4, 4});
auto gotOutput = output->readMap<float>();
}
return true;
}
};
MNNTestSuiteRegister(CropTest, "op/crop");