mirror of https://github.com/alibaba/MNN.git
46 lines
1.7 KiB
C++
46 lines
1.7 KiB
C++
//
|
|
// MomentsTest.cpp
|
|
// MNNTests
|
|
//
|
|
// Created by MNN on 2019/12/17.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <MNN/expr/Expr.hpp>
|
|
#include <MNN/expr/ExprCreator.hpp>
|
|
#include "MNNTestSuite.h"
|
|
#include "TestUtils.h"
|
|
|
|
using namespace MNN::Express;
|
|
class MomentsTest : public MNNTestCase {
|
|
public:
|
|
virtual ~MomentsTest() = default;
|
|
virtual bool run(int precision) {
|
|
auto input = _Input({1, 4, 4, 1}, NCHW);
|
|
input->setName("input_tensor");
|
|
// set input data
|
|
const float inpudata[16] = {0.0, 1.0, 2.0, 3.0, -1.0, 0.0, 1.0, 2.0,
|
|
-2.0, -1.0, 0.0, 1.0, -3.0, -2.0, -1.0, 0.0};
|
|
auto inputPtr = input->writeMap<float>();
|
|
memcpy(inputPtr, inpudata, 16 * sizeof(float));
|
|
input->unMap();
|
|
input = _Convert(input, NC4HW4);
|
|
auto notused_var = _Const(1.0);
|
|
auto outputs = _Moments(input, {2, 3}, notused_var, true);
|
|
const std::vector<float> expectedMean = {1.5, 0.5, -0.5, -1.5};
|
|
const std::vector<float> expectedVar = {1.25, 1.25, 1.25, 1.25};
|
|
auto gotOutputMean = outputs[0]->readMap<float>();
|
|
auto gotOutputVar = outputs[1]->readMap<float>();
|
|
if (!checkVector<float>(gotOutputMean, expectedMean.data(), 4, 0.01)) {
|
|
MNN_ERROR("MomentsTest test failed!\n");
|
|
return false;
|
|
}
|
|
if (!checkVector<float>(gotOutputVar, expectedVar.data(), 4, 0.01)) {
|
|
MNN_ERROR("MomentsTest test failed!\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
MNNTestSuiteRegister(MomentsTest, "op/moments");
|