mirror of https://github.com/alibaba/MNN.git
39 lines
1.4 KiB
C++
39 lines
1.4 KiB
C++
//
|
|
// PadTest.cpp
|
|
// MNNTests
|
|
//
|
|
// Created by MNN on 2019/12/31.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <MNN/expr/Expr.hpp>
|
|
#include <MNN/expr/ExprCreator.hpp>
|
|
#include "MNNTestSuite.h"
|
|
#include "TestUtils.h"
|
|
using namespace MNN::Express;
|
|
class PadTest : public MNNTestCase {
|
|
public:
|
|
virtual ~PadTest() = default;
|
|
virtual bool run(int precision) {
|
|
auto input = _Input({1, 2, 2, 1}, NCHW);
|
|
input->setName("input_tensor");
|
|
// set input data
|
|
const float inpudata[] = {-1.0, -2.0, 3.0, 4.0};
|
|
auto inputPtr = input->writeMap<float>();
|
|
memcpy(inputPtr, inpudata, 4 * sizeof(float));
|
|
input->unMap();
|
|
const int paddings_data[] = {0, 0, 1, 1, 1, 1, 0, 0};
|
|
auto paddings = _Const(paddings_data, {4, 2}, NCHW, halide_type_of<int>());
|
|
auto output = _Pad(input, paddings);
|
|
const std::vector<float> expectedOutput = {0.0, 0.0, 0.0, 0.0, 0.0, -1.0, -2.0, 0.0,
|
|
0.0, 3.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0};
|
|
auto gotOutput = output->readMap<float>();
|
|
if (!checkVector<float>(gotOutput, expectedOutput.data(), 16, 0.01)) {
|
|
MNN_ERROR("PadTest test failed!\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
MNNTestSuiteRegister(PadTest, "op/pad");
|