MNN/test/op/PoolGradTest.cpp

99 lines
4.8 KiB
C++

//
// PoolGradTest.cpp
// MNNTests
//
// Created by MNN on 2019/09/24.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <MNN/expr/Expr.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Optimizer.hpp>
#include <string>
#include "MNNTestSuite.h"
#include "TestUtils.h"
using namespace MNN::Express;
class PoolGradTest : public MNNTestCase {
public:
virtual ~PoolGradTest() = default;
protected:
bool testOnBackend(MNNForwardType type, const std::string &deviceName, int precision) {
const int h = 7, w = 7, size = h * w;
const float originInputData[] = {0.3100, 0.0156, 0.0765, 0.1872, 0.2949, 0.2949, 0.0052, 0.0455, 0.3000,
0.1872, -0.1304, 0.2939, 0.2949, 0.2437, -0.0330, 0.0641, 0.2934, 0.0452,
-0.1621, 0.2534, 0.3948, 0.2203, -0.0665, 0.1727, 0.1119, -0.1570, 0.1260,
0.3523, 0.2305, 0.1664, 0.1277, 0.4092, -0.1601, 0.0929, 0.1138, 0.2331,
0.3501, 0.3382, 0.2309, 0.2175, 0.0826, -0.1567, 0.0320, 0.1205, -0.0566,
0.1267, -0.0004, 0.2930, 0.2353};
const float poolInputGradData[] = {1., 2., 3., 2., 3., 1., 3., 1., 2.};
const float maxExpectedGrad[] = {1., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2.,
0., 0., 0., 4., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 4., 0., 0.,
0., 0., 3., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0.};
const float aveExpectedGrad[] = {
0.111111, 0.111111, 0.333333, 0.222222, 0.555556, 0.333333, 0.333333, 0.111111, 0.111111, 0.333333,
0.222222, 0.555556, 0.333333, 0.333333, 0.333333, 0.333333, 0.888889, 0.555556, 1.000000, 0.444444,
0.444444, 0.222222, 0.222222, 0.555556, 0.333333, 0.444444, 0.111111, 0.111111, 0.555556, 0.555556,
1.000000, 0.444444, 0.777778, 0.333333, 0.333333, 0.333333, 0.333333, 0.444444, 0.111111, 0.333333,
0.222222, 0.222222, 0.333333, 0.333333, 0.444444, 0.111111, 0.333333, 0.222222, 0.222222};
auto poolInput = _Input({1, 1, h, w}, NCHW, halide_type_of<float>());
auto poolInputConvert = _Convert(poolInput, NC4HW4);
auto maxPoolOut = _MaxPool(poolInputConvert, {3, 3}, {2, 2});
auto avePoolOut = _AvePool(poolInputConvert, {3, 3}, {2, 2});
auto poolOutDim = maxPoolOut->getInfo()->dim;
int poolSize = 1;
for (auto length : poolOutDim) {
poolSize *= length;
}
auto poolInputGrad = _Input(poolOutDim, NCHW, halide_type_of<float>());
auto poolInputGradConvert = _Convert(poolInputGrad, NC4HW4);
auto maxPoolOutputGrad =
_Convert(_PoolGrad(poolInputConvert, maxPoolOut, poolInputGradConvert, {3, 3}, {2, 2}, MAXPOOL), NCHW);
auto avePoolOutputGrad =
_Convert(_PoolGrad(poolInputConvert, avePoolOut, poolInputGradConvert, {3, 3}, {2, 2}, AVEPOOL), NCHW);
const std::vector<int> outDim = {1, 1, h, w};
auto maxpoolOutputGradDim = maxPoolOutputGrad->getInfo()->dim;
auto avepoolOutputGradDim = avePoolOutputGrad->getInfo()->dim;
if (!checkVector<int>(maxpoolOutputGradDim.data(), outDim.data(), 4, 0)) {
MNN_ERROR("MaxpoolGrad(%s) shape test failed!\n", deviceName.c_str());
return false;
}
if (!checkVector<int>(avepoolOutputGradDim.data(), outDim.data(), 4, 0)) {
MNN_ERROR("AvepoolGrad(%s) shape test failed!\n", deviceName.c_str());
return false;
}
::memcpy(poolInput->writeMap<float>(), (const float *)originInputData, size * sizeof(float));
::memcpy(poolInputGrad->writeMap<float>(), (const float *)poolInputGradData, poolSize * sizeof(float));
auto compute = maxPoolOutputGrad->readMap<float>();
float errorScale = precision <= MNN::BackendConfig::Precision_High ? 1 : 100;
if (!checkVectorByRelativeError<float>(compute, maxExpectedGrad, size, 0.001 * errorScale)) {
MNN_ERROR("MaxpoolGrad(%s) test failed!\n", deviceName.c_str());
return false;
}
if (!checkVectorByRelativeError<float>(avePoolOutputGrad->readMap<float>(), aveExpectedGrad, size, 0.001 * errorScale)) {
MNN_ERROR("AvepoolGrad(%s) test failed!\n", deviceName.c_str());
return false;
}
return true;
}
};
class PoolGradTestOnCPU : public PoolGradTest {
public:
virtual ~PoolGradTestOnCPU() = default;
virtual bool run(int precision) {
return testOnBackend(MNN_FORWARD_CPU, "CPU", precision);
}
};
MNNTestSuiteRegister(PoolGradTestOnCPU, "op/PoolGrad");