mirror of https://github.com/alibaba/MNN.git
42 lines
1.3 KiB
C++
42 lines
1.3 KiB
C++
//
|
|
// SoftplusTest.cpp
|
|
// MNNTests
|
|
//
|
|
// Created by MNN on 2019/12/26.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <MNN/expr/Expr.hpp>
|
|
#include <MNN/expr/ExprCreator.hpp>
|
|
#include "MNNTestSuite.h"
|
|
#include "TestUtils.h"
|
|
|
|
using namespace MNN::Express;
|
|
class SoftplusTest : public MNNTestCase {
|
|
public:
|
|
virtual ~SoftplusTest() = default;
|
|
virtual bool run(int precision) {
|
|
auto input = _Input(
|
|
{
|
|
4,
|
|
},
|
|
NCHW);
|
|
input->setName("input_tensor");
|
|
// set input data
|
|
const float inpudata[] = {-1.0, -2.0, 3.0, 4.0};
|
|
auto inputPtr = input->writeMap<float>();
|
|
memcpy(inputPtr, inpudata, 4 * sizeof(float));
|
|
input->unMap();
|
|
auto output = _Softplus(input);
|
|
const std::vector<float> expectedOutput = {0.31326166, 0.12692805, 3.0485873, 4.01815};
|
|
auto gotOutput = output->readMap<float>();
|
|
float errorScale = precision <= MNN::BackendConfig::Precision_High ? 1 : 100;
|
|
if (!checkVectorByRelativeError<float>(gotOutput, expectedOutput.data(), 4, 0.0001 * errorScale)) {
|
|
MNN_ERROR("SoftplusTest test failed!\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
MNNTestSuiteRegister(SoftplusTest, "op/softplus");
|