mirror of https://github.com/alibaba/MNN.git
37 lines
1.1 KiB
C++
37 lines
1.1 KiB
C++
//
|
|
// TanHTest.cpp
|
|
// MNNTests
|
|
//
|
|
// Created by MNN on 2020/07/27.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <MNN/expr/Expr.hpp>
|
|
#include <MNN/expr/ExprCreator.hpp>
|
|
#include "MNNTestSuite.h"
|
|
#include "TestUtils.h"
|
|
|
|
using namespace MNN::Express;
|
|
class TanHTest : public MNNTestCase {
|
|
public:
|
|
virtual ~TanHTest() = default;
|
|
virtual bool run(int precision) {
|
|
auto input = _Input({5}, NCHW);
|
|
input->setName("input_tensor");
|
|
// set input data
|
|
const float inpudata[] = {-7.8, -2.0, 0.0, 1.0, 999.0};
|
|
auto inputPtr = input->writeMap<float>();
|
|
memcpy(inputPtr, inpudata, 5 * sizeof(float));
|
|
input->unMap();
|
|
auto output = _Tanh(input);
|
|
const std::vector<float> expectedOutput = {-1.0, -0.96, 0.0, 0.76, 1.0};
|
|
auto gotOutput = output->readMap<float>();
|
|
if (!checkVector<float>(gotOutput, expectedOutput.data(), 5, 0.01)) {
|
|
MNN_ERROR("EluTest test failed!\n");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
MNNTestSuiteRegister(TanHTest, "op/tanh");
|