MNN/test/op/TileTest.cpp

59 lines
2.1 KiB
C++

//
// TileTest.cpp
// MNNTests
//
// Created by MNN on 2019/01/15.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <MNN/expr/Expr.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include "MNNTestSuite.h"
#include "TestUtils.h"
#include <MNN/expr/ExecutorScope.hpp>
using namespace MNN::Express;
class TileTest : public MNNTestCase {
public:
virtual ~TileTest() = default;
bool _run(int precision, bool lazy) {
auto input = _Input({2, 2}, NCHW);
input->setName("input_tensor");
// set input data
const float inpudata[] = {-1.0, -2.0, 3.0, 4.0};
auto inputPtr = input->writeMap<float>();
memcpy(inputPtr, inpudata, 4 * sizeof(float));
input->unMap();
const int mul_data[] = {2, 2};
auto mul = _Const(mul_data, {2}, NCHW, halide_type_of<int>());
auto output = _Tile(input, mul);
const std::vector<float> expectedOutput = {-1.0, -2.0, -1.0, -2.0, 3.0, 4.0, 3.0, 4.0,
-1.0, -2.0, -1.0, -2.0, 3.0, 4.0, 3.0, 4.0};
auto gotOutput = output->readMap<float>();
if (!checkVector<float>(gotOutput, expectedOutput.data(), 16, 0.0001)) {
MNN_ERROR("TileTest test failed!\n");
return false;
}
return true;
}
virtual bool run(int precision) {
ExecutorScope::Current()->lazyEval = false;
auto res = _run(precision, false);
if (!res) {
FUNC_PRINT(1);
return false;
}
ExecutorScope::Current()->lazyEval = true;
ExecutorScope::Current()->setLazyComputeMode(MNN::Express::Executor::LAZY_CONTENT);
res = _run(precision, true);
if (!res) {
FUNC_PRINT(1);
return false;
}
ExecutorScope::Current()->setLazyComputeMode(MNN::Express::Executor::LAZY_FULL);
res = _run(precision, true);
return res;
}
};
MNNTestSuiteRegister(TileTest, "op/tile");