MNN/tools/quantization/Helper.cpp

219 lines
7.1 KiB
C++

//
// Helper.cpp
// MNN
//
// Created by MNN on 2019/08/05.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "Helper.hpp"
#if defined(_MSC_VER)
#include <Windows.h>
#undef min
#undef max
#else
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <dirent.h>
#endif
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#include <fstream>
#include <sstream>
#include <string>
#include "core/TensorUtils.hpp"
std::set<std::string> Helper::gNotNeedFeatureOp = { "Raster", "Pooling", "ReLU", "ReLU6", "Interp", "CropAndResize", "ROIPooling", "Gather", "GatherV2", "GatherND", "ScatterNd" };
std::set<MNN::OpType> Helper::INT8SUPPORTED_OPS = {
MNN::OpType_ConvInt8, MNN::OpType_DepthwiseConvInt8, MNN::OpType_PoolInt8, MNN::OpType_EltwiseInt8
// MNN::OpType_Int8ToFloat,
// MNN::OpType_FloatToInt8,
};
std::set<std::string> Helper::featureQuantizeMethod = {"EMA", "KL", "ADMM"};
std::set<std::string> Helper::weightQuantizeMethod = {"MAX_ABS", "ADMM"};
#if !defined(_MSC_VER)
bool Helper::fileExist(const std::string& file) {
struct stat buffer;
return stat(file.c_str(), &buffer) == 0;
}
#endif
void Helper::readClibrationFiles(std::vector<std::string>& images, const std::string& filePath, int* usedImageNum) {
int count = 0;
#if defined(_MSC_VER)
WIN32_FIND_DATA ffd;
HANDLE hFind = INVALID_HANDLE_VALUE;
hFind = FindFirstFile((filePath + "\\*").c_str(), &ffd);
if (INVALID_HANDLE_VALUE == hFind) {
std::cout << "open " << filePath << " failed: " << strerror(errno) << std::endl;
return;
}
while (FindNextFile(hFind, &ffd))
{
if (ffd.cFileName[0] == '.') {
continue;
}
const std::string fileName = filePath + "\\" + ffd.cFileName;
if (INVALID_FILE_ATTRIBUTES != GetFileAttributes(fileName.c_str()) && GetLastError() != ERROR_FILE_NOT_FOUND) {
if (*usedImageNum == 0) {
// use all images in the folder
images.push_back(fileName);
count++;
}
else if (count < *usedImageNum) {
// use usedImageNum images
images.push_back(fileName);
count++;
}
else {
break;
}
}
}
FindClose(hFind);
#else
DIR* root = opendir(filePath.c_str());
if (root == NULL) {
MNN_ERROR("open %s failed!\n", filePath.c_str());
return;
}
struct dirent* ent = readdir(root);
while (ent != NULL) {
if (ent->d_name[0] != '.') {
const std::string fileName = filePath + "/" + ent->d_name;
if (fileExist(fileName)) {
// std::cout << "==> " << fileName << std::endl;
// DLOG(INFO) << fileName;
if (*usedImageNum == 0) {
// use all images in the folder
images.push_back(fileName);
count++;
} else if (count < *usedImageNum) {
// use usedImageNum images
images.push_back(fileName);
count++;
} else {
break;
}
}
}
ent = readdir(root);
}
#endif
*usedImageNum = images.size();
DLOG(INFO) << "used image num: " << images.size();
}
void Helper::preprocessInput(MNN::CV::ImageProcess* pretreat, PreprocessConfig preprocessConfig,
const std::string& filename, MNN::Tensor* input, InputType inputType) {
if (inputType == InputType::IMAGE) {
int originalWidth, originalHeight, comp;
auto bitmap32bits = stbi_load(filename.c_str(), &originalWidth, &originalHeight, &comp, 4);
DCHECK(bitmap32bits != nullptr) << "input image error!";
const int hCropSize = int(originalHeight * preprocessConfig.centerCropHeight);
const int wCropSize = int(originalWidth * preprocessConfig.centerCropWidth);
MNN_ASSERT(hCropSize > 0 && wCropSize > 0);
// default center crop
int startH = (originalHeight - hCropSize) / 2;
int startW = (originalWidth - wCropSize) / 2;
const int endH = startH + hCropSize;
const int endW = startW + wCropSize;
float srcPoints[] = {
float(startW), float(startH),
float(startW), float(endH - 1),
float(endW - 1), float(startH),
float(endW - 1), float(endH - 1),
};
const int oh = preprocessConfig.targetHeight;
const int ow = preprocessConfig.targetWidth;
float dstPoints[] = {
0.0f, 0.0f,
0.0f, float(oh - 1),
float(ow - 1), 0.0f,
float(ow - 1), float(oh - 1),
};
MNN::CV::Matrix trans;
trans.setPolyToPoly((MNN::CV::Point*)dstPoints, (MNN::CV::Point*)srcPoints, 4);
pretreat->setMatrix(trans);
pretreat->convert(bitmap32bits, originalWidth, originalHeight, 0, input);
stbi_image_free(bitmap32bits);
}
if (inputType == InputType::SEQUENCE) {
if (!stringEndWith(filename, ".txt")) {
MNN_ERROR("Error: only '.txt' files are supported for sequence input.\n");
return;
}
std::ifstream f(filename);
if (!f.is_open()) {
MNN_ERROR("open file %s failed.\n", filename.c_str());
return;
}
std::string line;
std::vector<std::vector<float> > rawData;
while (std::getline(f, line)) {
std::stringstream ss(line);
float v;
std::vector<float> lineData;
while (ss >> v) {
lineData.emplace_back(v);
}
if (!lineData.empty()) {
rawData.emplace_back(lineData);
}
}
f.close();
if (rawData.empty()) {
MNN_ERROR("Error: no data found in file %s.", filename.c_str());
return;
}
std::vector<float> data;
for (int i = 0; i< rawData.size(); i++) {
if (rawData[i].size() != rawData[0].size()) {
MNN_ERROR("Error: sequence length not equal in input file %s\n", filename.c_str());
return;
}
data.insert(data.end(), rawData[i].begin(), rawData[i].end());
}
std::vector<int> shape = {1, int(rawData.size()), int(rawData[0].size())};
std::shared_ptr<MNN::Tensor> tensorWarp(MNN::Tensor::create(shape, input->getType(), data.data(), MNN::Tensor::CAFFE));
input->copyFromHostTensor(tensorWarp.get());
}
}
void Helper::invertData(float* dst, const float* src, int size) {
for (int i = 0; i < size; ++i) {
if (src[i] == .0f) {
dst[i] = 0.0f;
} else {
dst[i] = 1.0 / src[i];
}
}
}
bool Helper::stringEndWith(std::string const &fullString, std::string const &ending) {
if (fullString.length() >= ending.length()) {
return (0 == fullString.compare (fullString.length() - ending.length(), ending.length(), ending));
} else {
return false;
}
}