mirror of https://github.com/alibaba/MNN.git
159 lines
6.0 KiB
C++
159 lines
6.0 KiB
C++
//
|
|
// CPULayerNorm.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2020/07/15.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include <cmath>
|
|
#include "backend/cpu/CPULayerNorm.hpp"
|
|
#include "backend/cpu/CPUBackend.hpp"
|
|
#include "backend/cpu/compute/CommonOptFunction.h"
|
|
#include "core/Execution.hpp"
|
|
#include "core/Concurrency.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "MNN_generated.h"
|
|
|
|
namespace MNN {
|
|
|
|
CPULayerNorm::CPULayerNorm(std::shared_ptr<Resource> res, Backend* backend) : Execution(backend) {
|
|
mResource = res;
|
|
}
|
|
|
|
std::shared_ptr<CPULayerNorm::Resource> CPULayerNorm::makeResource(const MNN::Op* op, Backend* backend) {
|
|
const auto* layer_norm_param = op->main_as_LayerNorm();
|
|
std::shared_ptr<CPULayerNorm::Resource> res(new Resource);
|
|
res->mAxis = 0;
|
|
if (nullptr != layer_norm_param->axis()) {
|
|
res->mAxis = layer_norm_param->axis()->size();
|
|
}
|
|
res->mGroup = layer_norm_param->group();
|
|
res->mEpsilon = layer_norm_param->epsilon();
|
|
res->mRMSNorm = layer_norm_param->useRMSNorm();
|
|
if (layer_norm_param->gamma() && layer_norm_param->beta()) {
|
|
int size = layer_norm_param->gamma()->size();
|
|
res->mIniGammaBeta = true;
|
|
res->mGamma.reset(Tensor::createDevice<float>({size}));
|
|
auto status = backend->onAcquireBuffer(res->mGamma.get(), Backend::STATIC);
|
|
if (!status) {
|
|
MNN_ERROR("Out of memory when gamma is acquired in CPULayerNorm.\n");
|
|
return nullptr;
|
|
}
|
|
res->mBeta.reset(Tensor::createDevice<float>({size}));
|
|
status = backend->onAcquireBuffer(res->mBeta.get(), Backend::STATIC);
|
|
if (!status) {
|
|
MNN_ERROR("Out of memory when beta is acquired in CPULayerNorm.\n");
|
|
return nullptr;
|
|
}
|
|
|
|
if (layer_norm_param->beta()->size() != size) {
|
|
MNN_ERROR("Size of gamma and beta are not match in CPULayerNorm.\n");
|
|
}
|
|
const float* gamma_data = layer_norm_param->gamma()->data();
|
|
memcpy(res->mGamma->host<float>(), gamma_data, size * sizeof(float));
|
|
const float* beta_data = layer_norm_param->beta()->data();
|
|
memcpy(res->mBeta->host<float>(), beta_data, size * sizeof(float));
|
|
}
|
|
return res;
|
|
}
|
|
|
|
ErrorCode CPULayerNorm::onExecute(const std::vector<Tensor*> &inputs,
|
|
const std::vector<Tensor*> &outputs) {
|
|
const float* gamma = mResource->mIniGammaBeta ? mResource->mGamma->host<float>() : nullptr;
|
|
const float* beta = mResource->mIniGammaBeta ? mResource->mBeta->host<float>() : nullptr;
|
|
|
|
if (mInpZero.data()) {
|
|
const int8_t* input = inputs[0]->host<int8_t>();
|
|
int8_t* output = outputs[0]->host<int8_t>();
|
|
MNN_CONCURRENCY_BEGIN(tId, mOutterSize) {
|
|
auto core = static_cast<CPUBackend*>(backend())->int8Functions();
|
|
QuanPrePostParameters params;
|
|
params.maxValue = mMaxMinValue[0];
|
|
params.minValue = mMaxMinValue[1];
|
|
params.inputScale = mInpScale.data();
|
|
params.outputScale = mOutScale.data();
|
|
params.inputZeroPoint = mInpZero.data();
|
|
params.outputZeroPoint = mOutZero.data();
|
|
const int8_t* inner_input = input + tId * mInnerSize;
|
|
int8_t* inner_output = output + tId * mInnerSize;
|
|
core->MNNNormInt8(inner_output, inner_input, gamma, beta, mResource->mEpsilon, mInnerSize, ¶ms, mResource->mRMSNorm);
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
const float* input = inputs.at(0)->host<float>();
|
|
float* output = outputs.at(0)->host<float>();
|
|
MNN_CONCURRENCY_BEGIN(tId, mOutterSize) {
|
|
const float* inner_input = input + tId * mInnerSize;
|
|
float* inner_output = output + tId * mInnerSize;
|
|
MNNNorm(inner_output, inner_input, gamma, beta, mResource->mEpsilon, mInnerSize, mResource->mRMSNorm);
|
|
}
|
|
MNN_CONCURRENCY_END();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
ErrorCode CPULayerNorm::onResize(const std::vector<Tensor*> &inputs,
|
|
const std::vector<Tensor*> &outputs) {
|
|
mOutterSize = 1;
|
|
mInnerSize = 1;
|
|
int rank = inputs.at(0)->dimensions();
|
|
if (mResource->mGroup > 1) {
|
|
mOutterSize = inputs.at(0)->length(0) * mResource->mGroup;
|
|
for (int i = 1; i < rank; i++) {
|
|
mInnerSize *= inputs.at(0)->length(i);
|
|
}
|
|
mInnerSize /= mResource->mGroup;
|
|
return NO_ERROR;
|
|
}
|
|
for (int i = 0; i < rank - mResource->mAxis; ++i) {
|
|
mOutterSize *= inputs.at(0)->length(i);
|
|
}
|
|
for (int i = rank - mResource->mAxis; i < rank; ++i) {
|
|
mInnerSize *= inputs.at(0)->length(i);
|
|
}
|
|
if (CPUBackend::getDataType(inputs[0]) == DataType_DT_INT8 || inputs[0]->getType().bytes() == 1) {
|
|
mInpZero.resize(1);
|
|
mOutZero.resize(1);
|
|
mInpScale.resize(1);
|
|
mOutScale.resize(1);
|
|
mMaxMinValue.resize(2);
|
|
auto inpQuantAttr = TensorUtils::getDescribe(inputs[0])->quantAttr;
|
|
auto outQuantAttr = TensorUtils::getDescribe(outputs[0])->quantAttr;
|
|
mInpZero[0] = inpQuantAttr->zero;
|
|
mOutZero[0] = outQuantAttr->zero;
|
|
mInpScale[0] = inpQuantAttr->scale;
|
|
mOutScale[0] = outQuantAttr->scale == 0.f? 0.f : 1.0f / outQuantAttr->scale;
|
|
mMaxMinValue[0] = outQuantAttr->max;
|
|
mMaxMinValue[1] = outQuantAttr->min;
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
CPULayerNorm::~CPULayerNorm() {
|
|
// Do nothing
|
|
}
|
|
bool CPULayerNorm::onClone(Backend* bn, const Op* op, Execution** dst) {
|
|
if (nullptr == dst) {
|
|
return true;
|
|
}
|
|
*dst = new CPULayerNorm(mResource, bn);
|
|
return true;
|
|
}
|
|
|
|
class CPULayerNormCreator : public CPUBackend::Creator {
|
|
public:
|
|
Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op, Backend* backend) const override {
|
|
auto res = CPULayerNorm::makeResource(op, backend);
|
|
if (nullptr == res.get()) {
|
|
return nullptr;
|
|
}
|
|
return new CPULayerNorm(res, backend);
|
|
}
|
|
};
|
|
|
|
REGISTER_CPU_OP_CREATOR(CPULayerNormCreator, OpType_LayerNorm);
|
|
|
|
} // namespace MNN
|