mirror of https://github.com/alibaba/MNN.git
154 lines
7.4 KiB
C++
154 lines
7.4 KiB
C++
//
|
|
// ReluExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/execution/image/ReluExecution.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "backend/opencl/execution/image/UnaryExecution.hpp"
|
|
#include <string.h>
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
ReluExecution::ReluExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: CommonExecution(backend, op) {
|
|
auto mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto mPreluParamPtr = op->main_as_PRelu();
|
|
int preluSize = mPreluParamPtr->slopeCount();
|
|
const float *preluDataPtr = mPreluParamPtr->slope()->data();
|
|
|
|
int buffer_size = ALIGN_UP4(preluSize);
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()) {
|
|
buffer_size *= sizeof(half_float::half);
|
|
} else {
|
|
buffer_size *= sizeof(float);
|
|
}
|
|
cl::Buffer preluBuffer(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, buffer_size);
|
|
cl_int error;
|
|
auto preluDataPtrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(
|
|
preluBuffer, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
|
|
if(preluDataPtrCL != nullptr && error == CL_SUCCESS){
|
|
if(mOpenCLBackend->getOpenCLRuntime()->isWeightCpuTransHalf()){
|
|
for(int i=0; i<preluSize; i++) {
|
|
((half_float::half*)preluDataPtrCL)[i] = (half_float::half)(preluDataPtr[i]);
|
|
}
|
|
for(int i=preluSize; i<ALIGN_UP4(preluSize); i++) {
|
|
((half_float::half*)preluDataPtrCL)[i] = (half_float::half)(0.0f);
|
|
}
|
|
}else{
|
|
::memset(preluDataPtrCL, 0, buffer_size);
|
|
::memcpy(preluDataPtrCL, preluDataPtr, preluSize * sizeof(float));
|
|
}
|
|
}else{
|
|
MNN_ERROR("Map error preluDataPtrCL == nullptr \n");
|
|
}
|
|
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(preluBuffer, preluDataPtrCL);
|
|
mPreluParam.reset(Tensor::createDevice<float>({1, 1, 1, preluSize}));
|
|
mOpenCLBackend->onAcquireBuffer(mPreluParam.get(), Backend::STATIC);
|
|
copyBufferToImage(mOpenCLBackend->getOpenCLRuntime(), preluBuffer, openCLImage(mPreluParam.get()),
|
|
UP_DIV(preluSize, 4), 1);
|
|
}
|
|
ReluExecution::~ReluExecution() {
|
|
backend()->onReleaseBuffer(mPreluParam.get(), Backend::STATIC);
|
|
}
|
|
|
|
ErrorCode ReluExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
mUnits.resize(1);
|
|
auto nhwc = tensorShapeFormat(outputs[0]);
|
|
int nhwcArray[4] = {nhwc[0], nhwc[1], nhwc[2], UP_DIV(nhwc[3], 4)};
|
|
|
|
auto imageWidth = nhwc[2] * UP_DIV(nhwc[3], 4);
|
|
auto imageHeight = nhwc[0] * nhwc[1];
|
|
int reluImageWH[2] = {1, 1};
|
|
int reluStride[4] = {0, 0, 0, 1};
|
|
cl::NDRange localSize = {4, 4};
|
|
cl::NDRange globalSize = {(uint32_t)UP_DIV(imageWidth, 4) * 4, (uint32_t)UP_DIV(imageHeight, 4) * 4};
|
|
|
|
auto mOpenCLBackend = static_cast<OpenCLBackend *>(backend());
|
|
mUnits[0].kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("binary", "binary_prelu", {"-DOPERATOR=select(in0*in1,in0,in0>=(float4)0)"}, inputs[0], outputs[0]);
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= mUnits[0].kernel->get().setArg(0, openCLImage(inputs[0]));
|
|
ret |= mUnits[0].kernel->get().setArg(1, openCLImage(mPreluParam.get()));
|
|
ret |= mUnits[0].kernel->get().setArg(2, openCLImage(outputs[0]));
|
|
ret |= mUnits[0].kernel->get().setArg(3, nhwcArray);
|
|
ret |= mUnits[0].kernel->get().setArg(4, reluImageWH);
|
|
ret |= mUnits[0].kernel->get().setArg(5, reluStride);
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg ReluExecution");
|
|
|
|
mUnits[0].globalWorkSize = globalSize;
|
|
mUnits[0].localWorkSize = localSize;
|
|
mOpenCLBackend->recordKernel2d(mUnits[0].kernel, {(uint32_t)UP_DIV(imageWidth, 4) * 4, (uint32_t)UP_DIV(imageHeight, 4) * 4}, {4, 4});
|
|
return NO_ERROR;
|
|
}
|
|
class ReluCreator : public OpenCLBackend::Creator {
|
|
public:
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
|
|
const MNN::Op *op, Backend *backend) const override {
|
|
// There seems to be a bug on OpenCL compiler of AMD Radeon HD 7000 series.
|
|
// When use build option -Dname=definition, definition will be truncated by
|
|
// a comma, which violate opencl specification (quote, 'In particular, the definition will
|
|
// be truncated by embedded newline characters'.)
|
|
// So we use ternary operation (A ? B: C) instead of function call with comma
|
|
// (e.g, fmax(in,(float4)(0))), when there is a Radeon GPU.
|
|
bool isRadeonGpu = (static_cast<OpenCLBackend*>(backend)->getOpenCLRuntime()->getGpuType() == RADEON);
|
|
|
|
if (op->type() == OpType_ReLU6) {
|
|
char storage[256];
|
|
float minValue = 0.0f;
|
|
float maxValue = 6.0f;
|
|
if (nullptr != op->main_as_Relu6()) {
|
|
minValue = op->main_as_Relu6()->minValue();
|
|
maxValue = op->main_as_Relu6()->maxValue();
|
|
}
|
|
if (isRadeonGpu) {
|
|
std::string temp = "(in<=(float4)((float)%f)?(float4)((float)%f):(in>=(float4)((float)%f)?(float4)((float)%f):in))";
|
|
sprintf(storage, temp.c_str(), minValue, minValue, maxValue, maxValue);
|
|
return new UnaryExecution(storage, op, backend);
|
|
}
|
|
std::string temp = "clamp(in,(float4)((float)%f),(float4)((float)%f))";
|
|
sprintf(storage, temp.c_str(), minValue, maxValue);
|
|
return new UnaryExecution(storage, op, backend);
|
|
}
|
|
if (op->type() == OpType_ReLU) {
|
|
if (op->main_as_Relu()->slope() == 0.0f) {
|
|
if (isRadeonGpu) {
|
|
return new UnaryExecution("(in>(float4)((float)0)?in:(float4)((float)0))", op, backend);
|
|
}
|
|
return new UnaryExecution("fmax(in,(float4)((float)0))", op, backend);
|
|
}
|
|
auto slope = op->main_as_Relu()->slope();
|
|
char slopeCStr[30] = {};
|
|
sprintf(slopeCStr, "%.8f", slope);
|
|
std::string slopeStr = slopeCStr;
|
|
if (isRadeonGpu) {
|
|
return new UnaryExecution("in<(float4)((float)0)?(float)(" + slopeStr + "f)*in:in", op, backend);
|
|
}
|
|
return new UnaryExecution("select((float)(" + slopeStr + "f)*in,in,in>=(float4)((float)0))", op, backend);
|
|
}
|
|
if (op->type() == OpType_PReLU) {
|
|
if (op->main_as_PRelu()->slopeCount() == 1) {
|
|
auto slope = op->main_as_PRelu()->slope()->data()[0];
|
|
char slopeCStr[30] = {};
|
|
sprintf(slopeCStr, "%.8f", slope);
|
|
std::string slopeStr = slopeCStr;
|
|
if (isRadeonGpu) {
|
|
return new UnaryExecution("in<(float4)((float)0)?(float)(" + slopeStr + "f)*in:in", op, backend);
|
|
}
|
|
return new UnaryExecution("select((float)(" + slopeStr + "f)*in,in,in>=(float4)((float)0))", op, backend);
|
|
}
|
|
// FUNC_PRINT(1);
|
|
return new ReluExecution(inputs, op, backend);
|
|
}
|
|
return nullptr;
|
|
}
|
|
};
|
|
REGISTER_OPENCL_OP_CREATOR(ReluCreator, OpType_ReLU, IMAGE);
|
|
REGISTER_OPENCL_OP_CREATOR(ReluCreator, OpType_PReLU, IMAGE);
|
|
REGISTER_OPENCL_OP_CREATOR(ReluCreator, OpType_ReLU6, IMAGE);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|