mirror of https://github.com/alibaba/MNN.git
436 lines
16 KiB
C++
436 lines
16 KiB
C++
//
|
|
// Schedule.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2018/07/30.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "core/Schedule.hpp"
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <set>
|
|
#include <vector>
|
|
#include <unordered_map>
|
|
#include "core/Macro.h"
|
|
#include "core/RuntimeFactory.hpp"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "core/FileLoader.hpp"
|
|
#ifndef MNN_BUILD_MINI
|
|
#include "shape/SizeComputer.hpp"
|
|
#include "geometry/GeometryComputerUtils.hpp"
|
|
#endif
|
|
#include "utils/InitNet.hpp"
|
|
|
|
//#define MNN_OPEN_TIME_TRACE
|
|
#include <MNN/AutoTime.hpp>
|
|
using namespace std;
|
|
//#define MNN_AUTO_CHECK_COST
|
|
namespace MNN {
|
|
void Schedule::OpResizeCache::close(bool pass) {
|
|
mCanCache = false;
|
|
mInputInfos.clear();
|
|
mPass = pass;
|
|
}
|
|
void Schedule::OpResizeCache::addContentIndex(int index) {
|
|
mNeedCompareContent.emplace_back(index);
|
|
}
|
|
|
|
bool Schedule::OpResizeCache::match(const std::vector<Tensor*>& inputs) {
|
|
if (!mCanCache) {
|
|
return mPass;
|
|
}
|
|
if (!mComputed) {
|
|
return false;
|
|
}
|
|
if (mInputInfos.size() != inputs.size()) {
|
|
return false;
|
|
}
|
|
for (int u=0; u<mInputInfos.size(); ++u) {
|
|
auto des = TensorUtils::getDescribe(inputs[u]);
|
|
if (mInputInfos[u].order != des->dimensionFormat) {
|
|
return false;
|
|
}
|
|
if (mInputInfos[u].type.code != inputs[u]->getType().code || mInputInfos[u].type.bits != inputs[u]->getType().bits) {
|
|
return false;
|
|
}
|
|
if (mInputInfos[u].dim.size() != inputs[u]->dimensions()) {
|
|
mCanCache = false;
|
|
return false;
|
|
}
|
|
for (int v=0; v<mInputInfos[u].dim.size(); ++v) {
|
|
if (mInputInfos[u].dim[v] != inputs[u]->length(v)) {
|
|
mCanCache = false;
|
|
return false;
|
|
}
|
|
}
|
|
if (des->memoryType == Tensor::InsideDescribe::MEMORY_VIRTUAL && (des->stageMask & Tensor::InsideDescribe::COMPUTE_SHAPE_STAGE)) {
|
|
return false;
|
|
}
|
|
}
|
|
for (auto dim : mNeedCompareContent) {
|
|
auto t = inputs[dim];
|
|
auto& s = mInputInfos[dim];
|
|
if (0 != ::memcmp(s.buffer.data(), t->host<void>(), s.buffer.size())) {
|
|
mCanCache = false;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
void Schedule::OpResizeCache::open() {
|
|
mCanCache = true;
|
|
}
|
|
void Schedule::OpResizeCache::copyImmutable(const OpResizeCache& cache) {
|
|
mNeedCompareContent = cache.mNeedCompareContent;
|
|
}
|
|
|
|
void Schedule::OpResizeCache::insert(const std::vector<Tensor*>& inputs) {
|
|
if (!mCanCache) {
|
|
return;
|
|
}
|
|
mComputed = true;
|
|
mInputInfos.resize(inputs.size());
|
|
for (int u=0; u<inputs.size(); ++u) {
|
|
mInputInfos[u].dim = inputs[u]->shape();
|
|
mInputInfos[u].order = TensorUtils::getDescribe(inputs[u])->dimensionFormat;
|
|
mInputInfos[u].type = inputs[u]->getType();
|
|
}
|
|
for (auto dim : mNeedCompareContent) {
|
|
const int limit = 10000;
|
|
auto t = inputs[dim];
|
|
auto& s = mInputInfos[dim];
|
|
auto size = t->usize();
|
|
if (size > limit) {
|
|
close();
|
|
return;
|
|
}
|
|
s.buffer.resize(size);
|
|
::memcpy(s.buffer.data(), t->host<void>(), size);
|
|
}
|
|
}
|
|
|
|
|
|
MNNForwardType Schedule::getApprociateType(const ScheduleConfig& config) {
|
|
MNNForwardType type = config.type;
|
|
// FIXME: Support Auto determine
|
|
if (MNN_FORWARD_AUTO == config.type) {
|
|
//Define Auto choose priority
|
|
std::vector<MNNForwardType> priorityList;
|
|
priorityList.push_back(MNN_FORWARD_USER_0); //HIAI
|
|
priorityList.push_back(MNN_FORWARD_NN); //CoreML
|
|
priorityList.push_back(MNN_FORWARD_USER_1); //TensoRT
|
|
priorityList.push_back(MNN_FORWARD_CUDA); //CUDA
|
|
priorityList.push_back(MNN_FORWARD_OPENCL); //OpenCL
|
|
priorityList.push_back(MNN_FORWARD_METAL); //METAL
|
|
priorityList.push_back(MNN_FORWARD_VULKAN); //Vulkan
|
|
priorityList.push_back(MNN_FORWARD_CPU); //CPU
|
|
|
|
for (auto bn : priorityList) {
|
|
if (MNNGetExtraRuntimeCreator(bn) != nullptr) {
|
|
type = (MNNForwardType)bn;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
auto creator = MNNGetExtraRuntimeCreator(type);
|
|
if (nullptr == creator) {
|
|
MNN_PRINT("Can't Find type=%d backend, use %d instead\n", type, config.backupType);
|
|
type = config.backupType;
|
|
} else {
|
|
// TODO : Not Limited to opencl
|
|
if(type == MNN_FORWARD_OPENCL && config.backendConfig != nullptr) {
|
|
if(config.backendConfig->power == BackendConfig::Power_Low) {
|
|
Backend::Info info;
|
|
info.type = type;
|
|
std::shared_ptr<Runtime> bn(creator->onCreate(info));
|
|
bool isSupportLowPower = bn->onGetRuntimeStatus(RuntimeStatus::STATUS_SUPPORT_POWER_LOW);
|
|
if(!isSupportLowPower) {
|
|
MNN_PRINT("type=%d backend don't Support Low Power, use %d instead\n", type, config.backupType);
|
|
type = config.backupType;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return type;
|
|
}
|
|
|
|
static void generateScheduleGraph(vector<const Op*>& ops, const Net* net, const ScheduleConfig& configs,
|
|
const vector<shared_ptr<Tensor>>& allTensors) {
|
|
|
|
// for (int i = 0; i < net->oplists()->size(); ++i) {
|
|
// auto op = net->oplists()->Get(i);
|
|
// MNN_PRINT("generateScheduleGraph, op type:%s, op name:%s\n", EnumNameOpType(op->type()), op->name()->c_str());
|
|
// }
|
|
|
|
if (configs.path.inputs.empty() && configs.path.outputs.empty()) {
|
|
// Use Default Linear schedule
|
|
ops.clear();
|
|
ops.reserve(net->oplists()->size());
|
|
for (int i = 0; i < net->oplists()->size(); ++i) {
|
|
auto op = net->oplists()->GetAs<Op>(i);
|
|
ops.emplace_back(op);
|
|
}
|
|
return;
|
|
}
|
|
// 0: not set, 1: output, 2:input
|
|
std::vector<int> tensorMask(net->tensorName()->size());
|
|
::memset(tensorMask.data(), 0, tensorMask.size() * sizeof(int));
|
|
|
|
// 0: use, 1: no use
|
|
std::vector<int> opMask(net->oplists()->size());
|
|
::memset(opMask.data(), 0, opMask.size() * sizeof(int));
|
|
|
|
// Set Initial Status
|
|
std::set<std::string> inputNames;
|
|
std::set<std::string> outputNames;
|
|
for (auto& n : configs.path.inputs) {
|
|
inputNames.insert(n);
|
|
}
|
|
for (auto& n : configs.path.outputs) {
|
|
outputNames.insert(n);
|
|
}
|
|
if (configs.path.mode == ScheduleConfig::Path::Mode::Tensor) {
|
|
for (int i=0; i<tensorMask.size(); ++i) {
|
|
auto name = net->tensorName()->GetAsString(i)->c_str();
|
|
if (outputNames.find(name) != outputNames.end()) {
|
|
tensorMask[i] = 1;
|
|
}
|
|
// If both input/output, set as input
|
|
if (inputNames.find(name) != inputNames.end()) {
|
|
tensorMask[i] = 2;
|
|
}
|
|
}
|
|
} else {
|
|
// Op Mode
|
|
for (int i=0; i<opMask.size(); ++i) {
|
|
auto op = net->oplists()->GetAs<Op>(i);
|
|
if (nullptr == op->name()) {
|
|
continue;
|
|
}
|
|
auto name = op->name()->c_str();
|
|
if (outputNames.find(name) != outputNames.end()) {
|
|
opMask[i] = 1;
|
|
if (nullptr != op->outputIndexes()) {
|
|
for (int j=0; j<op->outputIndexes()->size(); ++j) {
|
|
auto index = op->outputIndexes()->data()[j];
|
|
if (tensorMask[index] != 2) {
|
|
tensorMask[index] = 1;
|
|
}
|
|
}
|
|
}
|
|
if (nullptr != op->inputIndexes()) {
|
|
for (int j=0; j<op->inputIndexes()->size(); ++j) {
|
|
auto index = op->inputIndexes()->data()[j];
|
|
if (tensorMask[index] != 2) {
|
|
tensorMask[index] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (inputNames.find(name) != inputNames.end()) {
|
|
opMask[i] = 1;
|
|
if (nullptr != op->outputIndexes()) {
|
|
for (int j=0; j<op->outputIndexes()->size(); ++j) {
|
|
auto index = op->outputIndexes()->data()[j];
|
|
tensorMask[index] = 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool change = false;
|
|
do {
|
|
change = false;
|
|
for (int i=0; i<opMask.size(); ++i) {
|
|
if (opMask[i] > 0) {
|
|
continue;
|
|
}
|
|
auto op = net->oplists()->GetAs<Op>(i);
|
|
if (nullptr != op->outputIndexes()) {
|
|
for (int j=0; j<op->outputIndexes()->size(); ++j) {
|
|
auto index = op->outputIndexes()->data()[j];
|
|
if (tensorMask[index] == 1) {
|
|
opMask[i] = 1;
|
|
change = true;
|
|
}
|
|
}
|
|
}
|
|
if (nullptr != op->inputIndexes() && opMask[i]) {
|
|
for (int j=0; j<op->inputIndexes()->size(); ++j) {
|
|
auto index = op->inputIndexes()->data()[j];
|
|
if (tensorMask[index] != 2) {
|
|
tensorMask[index] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} while (change);
|
|
|
|
for (int i=0; i<opMask.size(); ++i) {
|
|
if (opMask[i] > 0) {
|
|
ops.emplace_back(net->oplists()->GetAs<Op>(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
static vector<Schedule::OpCacheInfo> _scheduleUnit(const Net* net, const ScheduleConfig& configs,
|
|
const vector<shared_ptr<Tensor>>& allTensors) {
|
|
vector<Schedule::OpCacheInfo> oplists;
|
|
vector<const Op*> ops;
|
|
generateScheduleGraph(ops, net, configs, allTensors);
|
|
initPipelineInfosFromOps(oplists, ops, allTensors);
|
|
return oplists;
|
|
}
|
|
|
|
bool Schedule::schedule(ScheduleInfo& scheduleInfo, const Net* net, const std::vector<ScheduleConfig>& configs, const RuntimeInfo& runtimeInfo) {
|
|
if (nullptr == net->oplists()) {
|
|
MNN_PRINT("Empty net for schedule\n");
|
|
return false;
|
|
}
|
|
if (scheduleInfo.defaultBackend.get() == nullptr && scheduleInfo.allTensors.empty()) {
|
|
// Const not init, init it
|
|
BackendConfig defaultConfig;
|
|
defaultConfig.flags = 4;
|
|
scheduleInfo.defaultBackend.reset(runtimeInfo.second->onCreate(&defaultConfig));
|
|
ErrorCode code = NO_ERROR;
|
|
FileLoader loader(scheduleInfo.externalWeightPath.c_str());
|
|
initConstTensors(scheduleInfo.allTensors, net, scheduleInfo.defaultBackend.get(), code, &loader);
|
|
if (NO_ERROR != code) {
|
|
MNN_ERROR("Schedule Const init errorcode = %d\n", code);
|
|
return false;
|
|
}
|
|
}
|
|
bool valid = initTensors(scheduleInfo.allTensors, net);
|
|
scheduleInfo.validForResize = valid;
|
|
std::vector<std::shared_ptr<Tensor>>& allTensors = scheduleInfo.allTensors;
|
|
std::vector<std::pair<Schedule::BackendCache, std::vector<Schedule::OpCacheInfo>>> result;
|
|
|
|
for (auto& config : configs) {
|
|
Backend::Info compute;
|
|
compute.type = getApprociateType(config);
|
|
compute.numThread = config.numThread;
|
|
if(config.type == MNN_FORWARD_AUTO) {
|
|
if(compute.type == MNN_FORWARD_OPENCL || compute.type == MNN_FORWARD_METAL) {
|
|
// AUTO set default gpu-mode MNN_GPU_TUNING_FAST
|
|
compute.numThread = 16;
|
|
}
|
|
}
|
|
compute.user = config.backendConfig;
|
|
auto oplists = _scheduleUnit(net, config, allTensors);
|
|
Schedule::BackendCache cache;
|
|
cache.info = std::move(compute);
|
|
result.emplace_back(std::make_pair(cache, std::move(oplists)));
|
|
}
|
|
|
|
scheduleInfo.pipelineInfo = std::move(result);
|
|
|
|
// get all used op's output, drop unused op, won't change op order. always insert all Input Ops
|
|
std::vector<const Op*> oplists;
|
|
{
|
|
for (std::pair<Schedule::BackendCache, vector<Schedule::OpCacheInfo>>& pipeline : scheduleInfo.pipelineInfo) {
|
|
for (auto& info : pipeline.second) {
|
|
oplists.push_back(info.op);
|
|
}
|
|
}
|
|
}
|
|
// set tensors' input/output usage by oplists info
|
|
setInputOutputForOps(allTensors, oplists, net->usage() == Usage_INFERENCE_STATIC);
|
|
|
|
// add output index by config info and outputName
|
|
std::unordered_map<std::string, int> tensorNameIndexMap;
|
|
for (int i = 0; i < net->tensorName()->size(); ++i) {
|
|
tensorNameIndexMap[net->tensorName()->Get(i)->str()] = i;
|
|
}
|
|
bool userSetOutput = false;
|
|
for (auto& config : configs) {
|
|
userSetOutput = userSetOutput || (!config.saveTensors.empty());
|
|
for (const auto& name : config.saveTensors) {
|
|
auto iter = tensorNameIndexMap.find(name);
|
|
if (iter != tensorNameIndexMap.end()) {
|
|
auto t = allTensors[iter->second].get();
|
|
if (TensorUtils::getDescribe(t)->usage == Tensor::InsideDescribe::NORMAL) {
|
|
TensorUtils::getDescribe(t)->usage = Tensor::InsideDescribe::OUTPUT;
|
|
}
|
|
scheduleInfo.outputTensor.insert(
|
|
std::make_pair(net->tensorName()->GetAsString(iter->second)->c_str(), t));
|
|
} else {
|
|
MNN_PRINT("Bad outputname: %s\n", name.c_str());
|
|
}
|
|
}
|
|
}
|
|
if (net->outputName()) {
|
|
userSetOutput = userSetOutput || net->outputName()->size() >= 1;
|
|
for (int i = 0; i < net->outputName()->size(); ++i) {
|
|
std::string name = net->outputName()->Get(i)->str();
|
|
auto iter = tensorNameIndexMap.find(name);
|
|
if (iter != tensorNameIndexMap.end()) {
|
|
auto t = allTensors[iter->second].get();
|
|
if (TensorUtils::getDescribe(t)->usage == Tensor::InsideDescribe::NORMAL) {
|
|
TensorUtils::getDescribe(t)->usage = Tensor::InsideDescribe::OUTPUT;
|
|
}
|
|
scheduleInfo.outputTensor.insert(
|
|
std::make_pair(net->tensorName()->GetAsString(iter->second)->c_str(), t));
|
|
}
|
|
}
|
|
}
|
|
if (scheduleInfo.outputTensor.empty()) {
|
|
userSetOutput = false;
|
|
}
|
|
// add input/output tensor to schedule's input/output
|
|
for (int index = 0; index < allTensors.size(); index++) {
|
|
auto t = allTensors[index].get();
|
|
auto usage = TensorUtils::getDescribe(t)->usage;
|
|
if (usage == Tensor::InsideDescribe::INPUT) {
|
|
scheduleInfo.inputTensors.insert(std::make_pair(net->tensorName()->GetAsString(index)->c_str(), t));
|
|
}
|
|
if (usage == Tensor::InsideDescribe::OUTPUT && (!userSetOutput)) {
|
|
scheduleInfo.outputTensor.insert(
|
|
std::make_pair(net->tensorName()->GetAsString(index)->c_str(), t));
|
|
}
|
|
}
|
|
if (net->usage() == Usage_INFERENCE_STATIC) {
|
|
for (auto& pipInfo : scheduleInfo.pipelineInfo) {
|
|
pipInfo.first.needComputeGeometry = false;
|
|
pipInfo.first.needComputeShape = false;
|
|
}
|
|
}
|
|
|
|
#ifndef MNN_BUILD_MINI
|
|
for (auto iter = scheduleInfo.pipelineInfo.begin(); iter != scheduleInfo.pipelineInfo.end();) {
|
|
if (!iter->first.needComputeGeometry) {
|
|
// For static model don't need check const
|
|
iter++;
|
|
continue;
|
|
}
|
|
auto breakIndex = GeometryComputerUtils::buildConstantTensors(iter->second);
|
|
if (breakIndex >= 0) {
|
|
scheduleInfo.needInputContentForShape = true;
|
|
}
|
|
#ifdef MNN_SEPERTE_SIZE
|
|
if (breakIndex >= 0 && (breakIndex + 1) < iter->second.size()) {
|
|
// Split oplist
|
|
std::vector<Schedule::PipelineInfo> fuse;
|
|
std::vector<Schedule::PipelineInfo> separate;
|
|
fuse.insert(fuse.begin(), iter->second.begin(), iter->second.begin() + breakIndex + 1);
|
|
separate.insert(separate.begin(), iter->second.begin() + breakIndex + 1, iter->second.end());
|
|
oplists.clear();
|
|
iter->second = std::move(separate);
|
|
iter = scheduleInfo.pipelineInfo.insert(iter, std::make_pair(iter->first, fuse));
|
|
iter++;
|
|
iter++;
|
|
} else {
|
|
iter++;
|
|
}
|
|
#else
|
|
iter++;
|
|
#endif
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
} // namespace MNN
|