MNN/source/shape/ShapeBatchToSpaceND.cpp

62 lines
2.4 KiB
C++

//
// ShapeBatchToSpaceND.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
namespace MNN {
class BatchToSpaceNDSizeComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(outputs.size() == 1);
MNN_ASSERT(inputs.size() == 1 || inputs.size() == 3);
auto input = inputs[0];
auto output = outputs[0];
int blockSize = 0;
const int *blockData, *paddingData;
if (inputs.size() == 3) {
blockSize = inputs[1]->length(0);
blockData = inputs[1]->host<int32_t>();
paddingData = inputs[2]->host<int32_t>();
} else {
auto paramter = op->main_as_SpaceBatch();
const auto blockShape = paramter->blockShape();
const auto paddings = paramter->padding();
blockSize = blockShape->dims()->data()[0];
blockData = blockShape->int32s()->data();
paddingData = paddings->int32s()->data();
}
int batch = input->batch();
for (int i = 0; i < blockSize; ++i) {
batch /= blockData[i];
}
output->setLength(0, batch);
output->buffer().dimensions = input->buffer().dimensions;
auto format = TensorUtils::getDescribe(input)->dimensionFormat;
output->buffer().type = input->getType();
TensorUtils::getDescribe(output)->dimensionFormat = format;
if (MNN_DATA_FORMAT_NHWC != format) {
output->setLength(1, input->length(1));
for (int i = 0; i < blockSize; ++i) {
int paddedLength = input->length(2+i) * blockData[i] - paddingData[2 * i] - paddingData[2 * i+1];
output->setLength(i+2, paddedLength);
}
} else {
output->setLength(1 + blockSize, input->length(1 + blockSize));
for (int i = 0; i < blockSize; ++i) {
int paddedLength = input->length(1+i) * blockData[i] - paddingData[2 * i] - paddingData[2 * i+1];
output->setLength(i+1, paddedLength);
}
}
return true;
}
};
REGISTER_SHAPE_INPUTS(BatchToSpaceNDSizeComputer, OpType_BatchToSpaceND, std::vector<int>({1, 2}));
} // namespace MNN