MNN/source/shape/ShapeConvolution3D.cpp

57 lines
2.0 KiB
C++

//
// ShapeConvolution3D.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <math.h>
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
#include "core/TensorUtils.hpp"
namespace MNN {
class Convolution3DSizeComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
MNN_ASSERT(1 == inputs.size());
MNN_ASSERT(1 == outputs.size());
auto layer = op->main_as_Convolution3D()->common();
auto input = inputs[0];
if (input->buffer().dimensions != 5) {
return false;
}
auto& outputBuffer = outputs[0]->buffer();
outputBuffer.dimensions = input->buffer().dimensions;
outputBuffer.dim[0].extent = input->buffer().dim[0].extent;
outputBuffer.dim[1].extent = layer->outputCount();
for (int i = 0; i < 3; ++i) {
const int inputLength = input->length(i + 2), stride = (*layer->strides())[i];
if (inputLength <= 0) {
return false;
}
int outputLength;
if (layer->padMode() == PadMode_SAME) {
outputLength = UP_DIV(inputLength, stride);
} else {
const int pad = (*layer->pads())[i], kernel = (*layer->kernels())[i], dialate = (*layer->dilates())[i];
const int dialatedKernel = (kernel - 1) * dialate + 1;
outputLength = (inputLength + 2 * pad - dialatedKernel) / stride + 1;
}
outputBuffer.dim[i + 2].extent = outputLength;
}
outputBuffer.type = input->getType();
TensorUtils::getDescribe(outputs[0])->dimensionFormat = TensorUtils::getDescribe(inputs[0])->dimensionFormat;
return true;
}
};
REGISTER_SHAPE(Convolution3DSizeComputer, OpType_Convolution3D);
} // namespace MNN