MNN/source/shape/ShapeExpandDims.cpp

61 lines
1.8 KiB
C++

//
// ShapeExpandDims.cpp
// MNN
//
// Created by MNN on 2019/01/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "shape/SizeComputer.hpp"
#include "core/Macro.h"
namespace MNN {
class ExpandDimsComputer : public SizeComputer {
public:
virtual bool onComputeSize(const MNN::Op* op, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) const override {
const int inputSize = (int)inputs.size();
MNN_ASSERT(2 == inputSize || 1 == inputSize);
MNN_ASSERT(1 == outputs.size());
auto input = inputs[0];
auto output = outputs[0];
// default -1
int dim = -1;
if (inputSize == 2) {
// read dim from the second input
auto dims = inputs[1];
dim = dims->host<int32_t>()[0];
} else {
// get dim from expand_dims parameter(axis)
auto param = op->main_as_ExpandDims();
dim = param->axis();
}
if (dim < 0) {
dim = input->dimensions() + 1 + dim;
}
output->buffer().type = input->buffer().type;
int outputShapeDims = 0;
for (int i = 0; i < input->buffer().dimensions; i++) {
if (i == dim) {
output->buffer().dim[outputShapeDims++].extent = 1;
}
output->buffer().dim[outputShapeDims++].extent = input->buffer().dim[i].extent;
}
if (dim == input->buffer().dimensions) {
output->buffer().dim[outputShapeDims++].extent = 1;
}
output->buffer().dimensions = outputShapeDims;
TensorUtils::getDescribe(output)->dimensionFormat = TensorUtils::getDescribe(input)->dimensionFormat;
return true;
}
};
REGISTER_SHAPE_INPUTS(ExpandDimsComputer, OpType_ExpandDims, {1});
} // namespace MNN