MNN/codegen/OpFuse.cpp

523 lines
19 KiB
C++

//
// OpFuse.cpp
// MNN
//
// Created by MNN on 2020/9/10.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "OpFuse.hpp"
#include "geometry/GeometryComputerUtils.hpp"
#include "SourceModule.hpp"
#include "opencl/OpenCLTarget.hpp"
#include "metal/MetalTarget.hpp"
#ifdef MNN_CODEGEN_CUDA
#include "cuda/CUDATarget.hpp"
#endif
#include <queue>
#include <unordered_map>
#include "core/OpCommonUtils.hpp"
namespace MNN {
static void dumpOp(const Op* op) {
if (op->name()) MNN_PRINT("name: %s, ", op->name()->c_str());
MNN_PRINT("Type: %s,\n", MNN::EnumNameOpType(op->type()));
if (op->type() == OpType_BinaryOp) {
auto binary = op->main_as_BinaryOp();
auto type = binary->opType();
MNN_PRINT("Op: %s\n", MNN::EnumNamesBinaryOpOperation()[type]);
} else if (op->type() == OpType_UnaryOp){
auto unary = op->main_as_UnaryOp();
auto type = unary->opType();
MNN_PRINT("Op: %s\n", MNN::EnumNamesUnaryOpOperation()[type]);
}
}
static void dumpRegion(Tensor::InsideDescribe::Region& reg) {
MNN_PRINT("\n{\nsize: [%d, %d, %d], origin: %p\n", reg.size[0], reg.size[1], reg.size[2], reg.origin);
MNN_PRINT("src: { stride: [%d, %d, %d], offset: %d }\n", reg.src.stride[0],reg.src.stride[1],reg.src.stride[2],reg.src.offset);
MNN_PRINT("dst: { stride: [%d, %d, %d], offset: %d }\n}\n", reg.dst.stride[0],reg.dst.stride[1],reg.dst.stride[2],reg.dst.offset);
}
static void dumpTensor(const Tensor* t) {
MNN_PRINT("\t%p [", t);
for (int d : t->shape())
MNN_PRINT("%d,", d);
MNN_PRINT("], format:%d\n", TensorUtils::getDescribe(t)->dimensionFormat);
auto des = TensorUtils::getDescribe(t);
if (des->memoryType == Tensor::InsideDescribe::MEMORY_VIRTUAL) {
MNN_PRINT("Regions:");
for (auto reg : des->regions) {
dumpRegion(reg);
}
}
}
static void dumpCmd(const Command* cmd) {
MNN_PRINT("\n{\n");
dumpOp(cmd->op);
MNN_PRINT("output: \n");
dumpTensor(cmd->outputs[0]);
MNN_PRINT("input: \n");
for (auto input : cmd->inputs) {
dumpTensor(input);
}
MNN_PRINT("}\n");
}
void mergeConvolutionAndPrelu(Node* root, MNNForwardType forwardType){
if (root->cmd->op != nullptr && root->cmd->op->type() == OpType_Convolution && root->succ.size() == 1) {
auto child = root->succ[0];
if(child->cmd->op->type() == OpType_PReLU){
if(root->cmd->op->externalPath() != nullptr){
return;
}
std::shared_ptr<Command> cmdPlugin;
auto inputs = root->cmd->inputs;
auto outputs = root->cmd->outputs;
auto convOp = root->cmd->op->main_as_Convolution2D();
if(convOp->quanParameter() != nullptr || convOp->symmetricQuan() != nullptr || convOp->sparseParameter() != nullptr || convOp->external() != nullptr || convOp->common()->outputCount() != child->cmd->op->main_as_PRelu()->slopeCount()){
return;
}
std::unique_ptr<OpT> fuseOp(new OpT);
fuseOp->type = OpType_Extra;
fuseOp->name = root->cmd->op->name()->str();
ExtraT* extra_param = new ExtraT;
extra_param->type = "ExtraConvolution2DPrelu";
extra_param->attr.resize(2);
// copy convolution2D param
AttributeT* convAtr = new AttributeT;
BlobT* convParamBlob = new BlobT;
{
std::unique_ptr<Convolution2DT> convolutionParam(convOp->UnPack());
flatbuffers::FlatBufferBuilder builder;
auto lastOffset = Convolution2D::Pack(builder, convolutionParam.get());
builder.Finish(lastOffset);
const uint8_t* buffer_ptr = builder.GetBufferPointer();
const size_t size = builder.GetSize();
convParamBlob->uint8s.resize(size);
::memcpy(convParamBlob->uint8s.data(), buffer_ptr, size);
}
convAtr->tensor.reset(convParamBlob);
extra_param->attr[0].reset(convAtr);
// copy prelu param
AttributeT* preluAtr = new AttributeT;
BlobT* preluParamBlob = new BlobT;
{
std::unique_ptr<PReluT> preluParam(child->cmd->op->main_as_PRelu()->UnPack());
flatbuffers::FlatBufferBuilder builder;
auto lastOffset = PRelu::Pack(builder, preluParam.get());
builder.Finish(lastOffset);
const uint8_t* buffer_ptr = builder.GetBufferPointer();
const size_t size = builder.GetSize();
preluParamBlob->uint8s.resize(size);
::memcpy(preluParamBlob->uint8s.data(), buffer_ptr, size);
}
preluAtr->tensor.reset(preluParamBlob);
extra_param->attr[1].reset(preluAtr);
fuseOp->main.type = OpParameter_Extra;
fuseOp->main.value = extra_param;
flatbuffers::FlatBufferBuilder builder;
auto lastOffset = Op::Pack(builder, fuseOp.get());
builder.Finish(lastOffset);
cmdPlugin = GeometryComputerUtils::makeCommand(builder, inputs, outputs);
root->cmd->op = cmdPlugin->op;
root->cmd->inputs = cmdPlugin->inputs;
root->cmd->outputs = cmdPlugin->outputs;
root->cmd->buffer = cmdPlugin->buffer;
child->cmd->op = nullptr;
child->cmd->buffer.reset();
for(auto &childNode : child->succ){
for(auto &input : childNode->cmd->inputs){
if(input == child->cmd->outputs[0]){
input = root->cmd->outputs[0];
}
}
}
root->succ = child->succ;
}
}
}
// is legal fused type
bool isLegal(Command* cmd, MNNForwardType forwardType) {
auto type = cmd->op->type();
bool elemWise = type == OpType_BinaryOp
|| type == OpType_UnaryOp
|| type == OpType_ReLU
|| type == OpType_ReLU6
|| type == OpType_Eltwise;
if (elemWise) {
if(forwardType == MNN_FORWARD_OPENCL) {
for (auto t : cmd->inputs) {
if (t->width() * UP_DIV(t->channel(), 4) > 16384) {
return false;
}
auto des = TensorUtils::getDescribe(t)->regions;
for(auto region : des)
{
auto tensor = region.origin;
if (tensor->width() * UP_DIV(tensor->channel(), 4) > 16384) {
return false;
}
}
}
}
if(TensorUtils::getDescribe(cmd->outputs[0])->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
cmd->canVectorize = true;
} else {
int count = 1;
for(int i = 0; i < cmd->outputs[0]->dimensions(); i++) {
count *= cmd->outputs[0]->length(i);
}
if(count % 4 == 0) {
cmd->canVectorize = true;
} else {
cmd->canVectorize = false;
}
}
return true;
}
if (forwardType == MNN_FORWARD_CUDA && type == OpType_Raster) {
// Fuse NC4HW4 -> NCHW/HHWC
OpCommonUtils::TensorConvertParameter singleConvert;
auto input = cmd->outputs[0];
OpCommonUtils::rasterInputReset(cmd->inputs, cmd->outputs[0]);
singleConvert.type = 0;
auto des = TensorUtils::getDescribe(input);
if(des->regions.size() == 1) {
OpCommonUtils::turnRegion2Convert(des->regions[0], cmd->outputs[0], singleConvert);
if (singleConvert.type > 0){
auto realInput = TensorUtils::getDescribe(input)->regions[0].origin;
auto sourceFormat = TensorUtils::getDescribe(realInput)->dimensionFormat;
if (MNN_DATA_FORMAT_NC4HW4 == sourceFormat) { // NC4HW4 -> NCHW/NHWC is Supported!
if(singleConvert.type == 1) { // output NCHW
if(singleConvert.batch != cmd->outputs[0]->length(0)) {
return false;
}
if(cmd->outputs[0]->dimensions() < 3 || singleConvert.channel != cmd->outputs[0]->length(1)) {
return false;
}
int area = 1;
for(int i = 2; i < cmd->outputs[0]->dimensions(); i++) {
area *= cmd->outputs[0]->length(i);
}
if(singleConvert.area != area) {
return false;
}
return true;
}
if(singleConvert.type == 2) { // output NHWC
if(singleConvert.batch != cmd->outputs[0]->length(0)) {
return false;
}
int dims = cmd->outputs[0]->dimensions();
if(dims < 3 || singleConvert.channel != cmd->outputs[0]->length(dims-1)) {
return false;
}
int area = 1;
for(int i = 1; i < dims-1; i++) {
area *= cmd->outputs[0]->length(i);
}
if(singleConvert.area != area) {
return false;
}
if(singleConvert.channel % 4 == 0) {
cmd->canVectorize = true;
}
return true;
}
return false;
}
}
}
}
return false;
}
Node* LCA(Node* x, Node* y) {
while (x != y) {
if (!x || !y) {
return nullptr;
}
if (x->topoIndex < y->topoIndex) {
x = x->domainatePred;
} else {
y = y->domainatePred;
}
}
return x;
}
bool allPathLegal(Node* s, Node* t, MNNForwardType type) {
bool legal = true;
std::queue<Node*> q;
q.push(s);
while (!q.empty()) {
auto node = q.front();
q.pop();
legal &= isLegal(node->cmd, type);
if(!legal) {
return false;
}
for (auto succ : node->succ) {
if (succ != t) {
q.push(succ);
}
}
}
return legal;
}
std::vector<Node*> fuseNode(Node* root, std::vector<Node*>& edges, MNNForwardType type) {
std::vector<Node*> fuseSet;
std::queue<Node*> q;
q.push(root);
int rasterCount = 0;
bool insert = false;
while (!q.empty()) {
insert = false;
auto node = q.front();
if(node->cmd->op->type() == OpType_Raster) {
// Current only fuse single raster
rasterCount++;
if(rasterCount < 2) {
fuseSet.insert(fuseSet.begin(), node);
insert = true;
}
} else {
fuseSet.insert(fuseSet.begin(), node);
insert = true;
}
q.pop();
if(insert) {
for (auto child : node->domainateSucc) {
if (isLegal(child->cmd, type) && allPathLegal(child, root, type)) {
q.push(child);
} else {
edges.push_back(child);
}
}
}
}
return fuseSet;
}
bool codegen(std::vector<Schedule::OpCacheInfo>& infos, std::vector<std::vector<Node*>>& fuseSets, MNNForwardType type, BackendConfig::PrecisionMode precision) {
// generate Kernel
std::unique_ptr<Target> target;
switch (type) {
#ifdef MNN_CODEGEN_OPENCL
case MNN_FORWARD_OPENCL:
target.reset(new OpenCLTarget(precision));
break;
#endif
#ifdef MNN_CODEGEN_METAL
case MNN_FORWARD_METAL:
target.reset(new MetalTarget(precision));
break;
#endif
#ifdef MNN_CODEGEN_CUDA
case MNN_FORWARD_CUDA:
target.reset(new CUDATarget(precision));
break;
#endif
default:
return false;
}
#if 0
if (fuseSets.size() > 0) {
MNN_PRINT(">>>>>>>>>>>>> fuseSets.size = %lu\n", fuseSets.size());
}
#endif
std::map<std::string, int> mapKernelSources;
for (int i = 0; i < fuseSets.size(); i++) {
auto& compSet = fuseSets[i];
/*
for (auto comp : compSet) {
dumpCmd(comp->cmd);
}
*/
bool fuseKernelVectorize = true;
for (auto& node : compSet) {
auto cmd = node->cmd;
if(!cmd->canVectorize) {
fuseKernelVectorize = false;
break;
}
}
target->setFuseKernelVectorize(fuseKernelVectorize);
SourceModule fuseModule(target.get());
InOutTensors tensors = fuseModule.buildKernel(compSet, i);
auto inputs = tensors.first;
auto outputs = tensors.second;
// build Plugin Op
std::shared_ptr<Command> cmdPlugin;
{
auto sourceCode = fuseModule.codegen();
if(mapKernelSources.find(sourceCode) == mapKernelSources.end()) {
int kernelCount = mapKernelSources.size();
mapKernelSources.insert(std::pair<std::string, int>(sourceCode, kernelCount));
}
std::string kernelName = "kernel_" + std::to_string(mapKernelSources[sourceCode]);
sourceCode.insert(fuseModule.strIndexForKernelNum(), kernelName);
std::unique_ptr<OpT> fuseOp(new OpT);
fuseOp->type = OpType_Extra;
fuseOp->name = fuseModule.opName();
ExtraT* extra_param = new ExtraT;
extra_param->type = kernelName;
extra_param->info.resize(sourceCode.size() + 1);
memcpy(extra_param->info.data(), sourceCode.data(), sourceCode.size() + 1);
extra_param->vector = fuseKernelVectorize;
fuseOp->main.type = OpParameter_Extra;
fuseOp->main.value = extra_param;
flatbuffers::FlatBufferBuilder builder;
auto lastOffset = Op::Pack(builder, fuseOp.get());
builder.Finish(lastOffset);
cmdPlugin = GeometryComputerUtils::makeCommand(builder, inputs, outputs);
}
for (int i = 0; i < compSet.size(); i++) {
auto cmd = const_cast<Command*>(compSet[i]->cmd);
if (i == compSet.size()-1) {
cmd->op = cmdPlugin->op;
cmd->inputs = cmdPlugin->inputs;
cmd->outputs = cmdPlugin->outputs;
cmd->buffer = cmdPlugin->buffer;
} else {
cmd->op = nullptr;
cmd->buffer.reset();
}
}
}
// printf(">>> fuse Kernel num: %lu\n", fuseSets.size());
for (auto& info : infos) {
for (auto iter = info.executeBuffer.command.begin(); iter != info.executeBuffer.command.end();) {
if (iter->get()->op == nullptr) {
iter = info.executeBuffer.command.erase(iter);
} else {
++iter;
}
}
}
// Clear useless cacheBuffer
for (auto& info : infos) {
for (auto iter = info.cacheBuffer.command.begin(); iter != info.cacheBuffer.command.end();) {
if (iter->get()->op == nullptr) {
iter = info.cacheBuffer.command.erase(iter);
} else {
++iter;
}
}
}
return true;
}
bool opFuse(std::vector<Schedule::OpCacheInfo>& infos, MNNForwardType type, BackendConfig::PrecisionMode precision) {
std::unordered_map<const Tensor*, Node*> outputTensor;
// build graph
std::vector<std::unique_ptr<Node>> graph;
auto insertEdge = [&outputTensor](const Tensor* inputTensor, Node* succNode) {
if (outputTensor.find(inputTensor) != outputTensor.end()) {
auto preNode = outputTensor[inputTensor];
succNode->pred.push_back(preNode);
preNode->succ.push_back(succNode);
}
};
for (int i = 0; i < infos.size(); i++) {
auto& info = infos[i];
auto& cmdBuffer = info.executeBuffer;
for (int j = 0; j < cmdBuffer.command.size(); j++) {
auto iter = cmdBuffer.command[j];
/*
if (iter->buffer.get()) {
iter->op = flatbuffers::GetMutableRoot<Op>((void*)iter->buffer);
}
*/
std::unique_ptr<Node> node(new Node);
node->cmd = iter.get();
node->topoIndex = i;
for (auto input : iter->inputs) {
insertEdge(input, node.get());
}
for (auto output : iter->outputs) {
outputTensor[output] = node.get();
}
graph.push_back(std::move(node));
}
}
if(type == MNN_FORWARD_OPENCL){
for(int i = 0; i < graph.size(); ++i){
mergeConvolutionAndPrelu(graph[i].get(), type);
}
for(auto iter = graph.begin(); iter != graph.end();){
if(iter->get()->cmd->op == nullptr){
iter = graph.erase(iter);
}else{
++iter;
}
}
}
std::queue<Node*> postDominateNodeQueue;
// build dominate tree
for (int i = static_cast<int>(graph.size()) - 1; i >= 0; i--) {
auto node = graph[i].get();
if (!node->succ.empty()) {
auto parent = node->succ[0];
for (int j = 1; j < node->succ.size(); j++) {
parent = LCA(parent, node->succ[j]);
}
node->domainatePred = parent;
if (parent) {
parent->domainateSucc.push_back(node);
} else {
postDominateNodeQueue.push(node);
}
} else {
node->domainatePred = nullptr;
postDominateNodeQueue.push(node);
}
}
// bfs find subgraph
std::vector<std::vector<Node*>> fuseSets;
while (!postDominateNodeQueue.empty()) {
auto root = postDominateNodeQueue.front();
postDominateNodeQueue.pop();
if (root->domainateSucc.empty()) {
continue;
}
std::vector<Node*> childs;
if (isLegal(root->cmd, type)) {
auto fuseSet = fuseNode(root, childs, type);
if (fuseSet.size() > 1) {
fuseSets.emplace_back(std::move(fuseSet));
}
} else {
childs = root->domainateSucc;
}
for (auto child : childs) {
postDominateNodeQueue.push(child);
}
}
#if 0
MNN_PRINT("fuse total number: %lu \n", fuseSets.size());
for (auto compSet : fuseSets) {
MNN_PRINT("set size: %lu \n", compSet.size());
if (true) {
for (auto com : compSet) {
// json :
// { fusedOps: [ { idx:int, srcOps: [name: string], inputs:[name:string], outputs:[name:string] } ], dynlib:string, jitObj:string, module:string }
dumpCmd(com->cmd);
}
}
}
#endif
return codegen(infos, fuseSets, type, precision);
}
} // namespace MNN