MNN/pymnn/examples/MNNEngineDemo/gpu_session_demo.py

69 lines
2.1 KiB
Python

import os
import sys
import MNN
import numpy as np
import cv2
def createTensor(tensor):
shape = tensor.getShape()
data = np.ones(shape, dtype=np.float32)
return MNN.Tensor(shape, tensor.getDataType(), data, tensor.getDimensionType())
def modelTest(modelPath):
print("Testing gpu model calling method\n")
net = MNN.Interpreter(modelPath)
net.setCacheFile(".cachefile")
# set 7 for Session_Resize_Defer, Do input resize only when resizeSession
#net.setSessionMode(7)
# set 9 for Session_Backend_Auto, Let BackGround Tuning
net.setSessionMode(9)
# set 0 for tune_num
net.setSessionHint(0, 20)
config = {}
config['backend'] = "OPENCL"
config['precision'] = "high"
session = net.createSession(config)
print("Run on backendtype: %d \n" % net.getSessionInfo(session, 2))
image = cv2.imread(sys.argv[2])
#cv2 read as bgr format
image = image[..., ::-1]
#change to rgb format
image = cv2.resize(image, (224, 224))
#resize to mobile_net tensor size
image = image - (103.94, 116.78, 123.68)
image = image * (0.017, 0.017, 0.017)
#preprocess it
image = image.transpose((2, 0, 1))
#change numpy data type as np.float32 to match tensor's format
image = image.astype(np.float32)
#cv2 read shape is NHWC, Tensor's need is NCHW,transpose it
tmp_input = MNN.Tensor((1, 3, 224, 224), MNN.Halide_Type_Float,\
image, MNN.Tensor_DimensionType_Caffe)
# input
inputTensor = net.getSessionInput(session)
net.resizeTensor(inputTensor, (1, 3, 224, 224))
net.resizeSession(session)
inputTensor.copyFrom(tmp_input)
# infer
net.runSession(session)
outputTensor = net.getSessionOutput(session)
# output
outputShape = outputTensor.getShape()
outputHost = createTensor(outputTensor)
outputTensor.copyToHostTensor(outputHost)
net.updateCacheFile(session, 0)
print("expect 983")
print("output belong to class: {}".format(np.argmax(outputHost.getData())))
if __name__ == '__main__':
modelName = sys.argv[1] # model path
modelTest(modelName)