MNN/pymnn/examples/MNNExpr/gpu_express_demo.py

49 lines
1.6 KiB
Python

# Copyright @ 2019 Alibaba. All rights reserved.
""" python demo usage about MNN API """
from __future__ import print_function
import numpy as np
import MNN
import sys
import cv2
def inference():
""" inference mobilenet_v1 using a specific picture """
config = {}
config['precision'] = 'low'
config['backend'] = 3
config['numThread'] = 4
rt = MNN.nn.create_runtime_manager((config,))
rt.set_cache(".cachefile")
# set_mode(type) //type 9 for "auto_backend"
rt.set_mode(9)
# set_hint(type, value) //type 0 for "tune_num"
rt.set_hint(0, 20)
net = MNN.nn.load_module_from_file(sys.argv[1], ["input"], ["MobilenetV1/Predictions/Reshape_1"], runtime_manager=rt)
image = cv2.imread(sys.argv[2])
#cv2 read as bgr format
image = image[..., ::-1]
#change to rgb format
image = cv2.resize(image, (224, 224))
#resize to mobile_net tensor size
image = image - (103.94, 116.78, 123.68)
image = image * (0.017, 0.017, 0.017)
#change numpy data type as np.float32 to match tensor's format
image = image.astype(np.float32)
input_var = MNN.expr.placeholder([1, 224, 224, 3], MNN.expr.NHWC)
input_var.write(image)
input_var = MNN.expr.convert(input_var, MNN.expr.NC4HW4)
#inference
output_var = net.forward([input_var])
output_var = output_var[0]
output_var = MNN.expr.convert(output_var, MNN.expr.NHWC)
print("expect 983")
print("output belong to class: {}".format(np.argmax(output_var.read())))
rt.update_cache()
if __name__ == "__main__":
inference()