mirror of https://github.com/alibaba/MNN.git
333 lines
15 KiB
C++
333 lines
15 KiB
C++
//
|
|
// RasterBufExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2020/05/12.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#ifndef MNN_OPENCL_BUFFER_CLOSED
|
|
|
|
#include "backend/opencl/execution/buffer/RasterBufExecution.hpp"
|
|
#include "core/Macro.h"
|
|
#include "core/TensorUtils.hpp"
|
|
#include "core/OpCommonUtils.hpp"
|
|
#include "backend/opencl/core/OpenCLBackend.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
RasterBufExecution::RasterBufExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
|
|
: CommonExecution(backend, op) {
|
|
mOpenCLBackend = (OpenCLBackend *)backend;
|
|
//nothing to do
|
|
}
|
|
|
|
ErrorCode RasterBufExecution::onEncode(const std::vector<Tensor *> &____inputs, const std::vector<Tensor *> &outputs) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start RasterBufExecution onResize !\n");
|
|
#endif
|
|
mTempInput.clear();
|
|
mTempOutput = nullptr;
|
|
MNN_ASSERT(outputs.size() == 1);
|
|
auto output = outputs[0];
|
|
if (!____inputs.empty()) {
|
|
OpCommonUtils::rasterInputReset(____inputs, outputs[0]);
|
|
}
|
|
auto des = TensorUtils::getDescribe(output);
|
|
auto outputDes = TensorUtils::getDescribe(output);
|
|
auto regionNum = des->regions.size();
|
|
auto mOpenCLBackend = static_cast<OpenCLBackend*>(backend());
|
|
auto runtime = mOpenCLBackend->getOpenCLRuntime();
|
|
int kernel_idx = 0;
|
|
auto outputShape = tensorShapeFormat(output);
|
|
mFast = false;
|
|
if (outputDes->dimensionFormat == MNN_DATA_FORMAT_NC4HW4) {
|
|
mFast = true;
|
|
for (int i=0; i< des->regions.size(); ++i) {
|
|
auto& slice = des->regions[i];
|
|
if (TensorUtils::getDescribe(slice.origin)->dimensionFormat != MNN_DATA_FORMAT_NC4HW4) {
|
|
mFast = false;
|
|
break;
|
|
}
|
|
if (!OpCommonUtils::canBlitFast(slice, output, 4, true)) {
|
|
mFast = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mNeedZero = !TensorUtils::regionIsFull(output);
|
|
mNeedZero = mNeedZero || ((outputShape[3] % 4) != 0 && MNN_DATA_FORMAT_NC4HW4 == outputDes->dimensionFormat && !mFast);
|
|
if(mFast == false){
|
|
CanCombine(outputs);
|
|
regionNum = mCombineInfo.size();
|
|
}
|
|
mUnits.resize(regionNum);
|
|
if(mNeedZero)
|
|
{
|
|
mUnits.resize(regionNum + 1);
|
|
int region[] = {outputShape[0], outputShape[3], outputShape[1], outputShape[2]};//nchw
|
|
if(MNN_DATA_FORMAT_NC4HW4 == outputDes->dimensionFormat){
|
|
region[1] = ROUND_UP(outputShape[3], 4);
|
|
}
|
|
Unit &unit = mUnits[kernel_idx++];
|
|
unit.kernel = runtime->buildKernel("raster_buf", "buffer_set_zero", {}, mOpenCLBackend->getPrecision(), output, output);
|
|
unit.localWorkSize = {8, 8};
|
|
unit.globalWorkSize = {(uint32_t)UP_DIV((region[2] * region[3]), 8)*8,
|
|
(uint32_t)UP_DIV((region[0] * region[1]), 8)*8};
|
|
|
|
int global_dim0 = region[2] * region[3];
|
|
int global_dim1 = region[0] * region[1];
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= unit.kernel->get().setArg(idx++, global_dim0);
|
|
ret |= unit.kernel->get().setArg(idx++, global_dim1);
|
|
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
|
|
if(ret != CL_SUCCESS)
|
|
{
|
|
MNN_PRINT("setArg err %d\n", (int)ret);
|
|
}
|
|
mOpenCLBackend->recordKernel2d(unit.kernel, {(uint32_t)UP_DIV((region[2] * region[3]), 8)*8,
|
|
(uint32_t)UP_DIV((region[0] * region[1]), 8)*8}, {8, 8});
|
|
}
|
|
if(mFast)
|
|
{
|
|
// nc4hw4 buffer raster
|
|
for (auto& slice : des->regions)
|
|
{
|
|
auto origin = slice.origin;
|
|
auto inputShape = tensorShapeFormat(origin);
|
|
Tensor::InsideDescribe::Region C4Region;
|
|
OpCommonUtils::turnToPackRegion(slice, C4Region, output, 4, true);
|
|
Unit &unit = mUnits[kernel_idx++];
|
|
unit.kernel = runtime->buildKernel("raster_buf", "raster_nc4hw4_buffer", {}, mOpenCLBackend->getPrecision(), origin, output);
|
|
|
|
const std::vector<uint32_t> gws = {(uint32_t)C4Region.size[2],
|
|
(uint32_t)C4Region.size[1],
|
|
(uint32_t)C4Region.size[0]};
|
|
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
|
|
|
|
auto outputShape = tensorShapeFormat(output);
|
|
auto sliceShape = tensorShapeFormat(slice.origin);
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= unit.kernel->get().setArg(idx++, gws[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, gws[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, gws[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(slice.origin));
|
|
ret |= unit.kernel->get().setArg(idx++, C4Region.src.offset);
|
|
ret |= unit.kernel->get().setArg(idx++, C4Region.src.stride[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, C4Region.src.stride[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, C4Region.src.stride[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, sliceShape[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, sliceShape[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, sliceShape[3]);
|
|
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
|
|
ret |= unit.kernel->get().setArg(idx++, C4Region.dst.offset);
|
|
ret |= unit.kernel->get().setArg(idx++, C4Region.dst.stride[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, C4Region.dst.stride[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, C4Region.dst.stride[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, outputShape[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, outputShape[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, outputShape[3]);
|
|
if(ret != CL_SUCCESS)
|
|
{
|
|
MNN_PRINT("setArg err %d\n", (int)ret);
|
|
}
|
|
std::string name = "raster_nc4hw4_buffer";
|
|
const std::vector<uint32_t> lws = localWS3DDefault(gws, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, unit.kernel, mOpenCLBackend->getCLTuneLevel(), "raster_buf").first;
|
|
|
|
unit.localWorkSize = {lws[0], lws[1], lws[2]};
|
|
|
|
unit.globalWorkSize = {ROUND_UP(gws[0], std::max((uint32_t)1, lws[0])),
|
|
ROUND_UP(gws[1], std::max((uint32_t)1, lws[1])),
|
|
ROUND_UP(gws[2], std::max((uint32_t)1, lws[2]))};
|
|
mOpenCLBackend->recordKernel3d(unit.kernel, gws, lws);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
for(auto& info : mCombineInfo){
|
|
auto slice = info.mRegion;
|
|
int nums = info.mCanCombineNum;
|
|
int src_offset = info.mSrc_offset;
|
|
int dst_offset = info.mDst_offset;
|
|
std::set<std::string> buildOptions;
|
|
auto origin = slice.origin;
|
|
auto inputShape = tensorShapeFormat(origin);
|
|
buildOptions.emplace("-DINPUT_FORMAT=" + std::to_string(TensorUtils::getDescribe(origin)->dimensionFormat));
|
|
buildOptions.emplace("-DOUTPUT_FORMAT=" + std::to_string(outputDes->dimensionFormat));
|
|
|
|
Unit &unit = mUnits[kernel_idx++];
|
|
unit.kernel = runtime->buildKernel("raster_buf", "raster_direct_buffer", buildOptions, mOpenCLBackend->getPrecision(), origin, output);
|
|
const std::vector<uint32_t> gws = {(uint32_t)slice.size[2] * nums,
|
|
(uint32_t)slice.size[1],
|
|
(uint32_t)slice.size[0]};
|
|
uint32_t mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= unit.kernel->get().setArg(idx++, gws[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, gws[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, gws[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, slice.size[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(origin));
|
|
ret |= unit.kernel->get().setArg(idx++, slice.src.offset);
|
|
ret |= unit.kernel->get().setArg(idx++, src_offset);
|
|
ret |= unit.kernel->get().setArg(idx++, slice.src.stride[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, slice.src.stride[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, slice.src.stride[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, inputShape[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, inputShape[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, inputShape[3]);
|
|
ret |= unit.kernel->get().setArg(idx++, inputShape[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, openCLBuffer(output));
|
|
ret |= unit.kernel->get().setArg(idx++, slice.dst.offset);
|
|
ret |= unit.kernel->get().setArg(idx++, dst_offset);
|
|
ret |= unit.kernel->get().setArg(idx++, slice.dst.stride[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, slice.dst.stride[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, slice.dst.stride[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, outputShape[2]);
|
|
ret |= unit.kernel->get().setArg(idx++, outputShape[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, outputShape[3]);
|
|
ret |= unit.kernel->get().setArg(idx++, outputShape[0]);
|
|
if(ret != CL_SUCCESS)
|
|
{
|
|
MNN_PRINT("setArg err %d\n", (int)ret);
|
|
}
|
|
|
|
std::string name = "raster_buffer";
|
|
const std::vector<uint32_t> lws = localWS3DDefault(gws, mMaxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name, unit.kernel, mOpenCLBackend->getCLTuneLevel(), "raster_buf").first;
|
|
|
|
unit.localWorkSize = {lws[0], lws[1], lws[2]};
|
|
unit.globalWorkSize = {gws[0], gws[1], gws[2]};
|
|
mOpenCLBackend->recordKernel3d(unit.kernel, gws, lws);
|
|
}
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end RasterBufExecution onResize !\n");
|
|
#endif
|
|
return NO_ERROR;
|
|
}
|
|
|
|
class RasterBufCreator : public OpenCLBackend::Creator {
|
|
public:
|
|
virtual ~RasterBufCreator() = default;
|
|
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs, const MNN::Op *op,
|
|
Backend *backend) const override {
|
|
for (int i = 0; i < inputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(inputs[i], false);
|
|
}
|
|
for (int i = 0; i < outputs.size(); ++i) {
|
|
TensorUtils::setTensorSupportPack(outputs[i], false);
|
|
}
|
|
return new RasterBufExecution(inputs, op, backend);
|
|
}
|
|
};
|
|
|
|
void RasterBufExecution::CanCombine(const std::vector<Tensor *> &outputs){
|
|
auto des = TensorUtils::getDescribe(outputs[0]);
|
|
auto regions = des->regions;
|
|
Tensor* origin;
|
|
int size0, size1, size2, src_offset, dst_offset, last_src_offset, last_dst_offset, src_sride0, src_sride1, src_sride2, dst_sride0, dst_sride1, dst_sride2;
|
|
int canCombineNum = 0;
|
|
for(auto& slice : des->regions){
|
|
bool res = true;
|
|
if(canCombineNum == 0){
|
|
origin = slice.origin;
|
|
size0 = slice.size[0];
|
|
size1 = slice.size[1];
|
|
size2 = slice.size[2];
|
|
src_sride0 = slice.src.stride[0];
|
|
src_sride1 = slice.src.stride[1];
|
|
src_sride2 = slice.src.stride[2];
|
|
dst_sride0 = slice.dst.stride[0];
|
|
dst_sride1 = slice.dst.stride[1];
|
|
dst_sride2 = slice.dst.stride[2];
|
|
canCombineNum++;
|
|
// push back
|
|
mCombineInfo.push_back(CanCombineInfo(slice, 0, 0, 1));
|
|
} else if(canCombineNum == 1){
|
|
res &= slice.origin == origin;
|
|
res &= slice.size[0] == size0;
|
|
res &= slice.size[1] == size1;
|
|
res &= slice.size[2] == size2;
|
|
res &= slice.src.stride[0] == src_sride0;
|
|
res &= slice.src.stride[1] == src_sride1;
|
|
res &= slice.src.stride[2] == src_sride2;
|
|
res &= slice.dst.stride[0] == dst_sride0;
|
|
res &= slice.dst.stride[1] == dst_sride1;
|
|
res &= slice.dst.stride[2] == dst_sride2;
|
|
if(res){
|
|
src_offset = slice.src.offset - last_src_offset;
|
|
dst_offset = slice.dst.offset - last_dst_offset;
|
|
canCombineNum++;
|
|
// change canCombineNum
|
|
mCombineInfo.back().mSrc_offset = src_offset;
|
|
mCombineInfo.back().mDst_offset = dst_offset;
|
|
mCombineInfo.back().mCanCombineNum = canCombineNum;
|
|
} else{
|
|
origin = slice.origin;
|
|
size0 = slice.size[0];
|
|
size1 = slice.size[1];
|
|
size2 = slice.size[2];
|
|
src_sride0 = slice.src.stride[0];
|
|
src_sride1 = slice.src.stride[1];
|
|
src_sride2 = slice.src.stride[2];
|
|
dst_sride0 = slice.dst.stride[0];
|
|
dst_sride1 = slice.dst.stride[1];
|
|
dst_sride2 = slice.dst.stride[2];
|
|
// recover
|
|
canCombineNum = 1;
|
|
// push back
|
|
mCombineInfo.push_back(CanCombineInfo(slice, 0, 0, 1));
|
|
}
|
|
} else{
|
|
res &= slice.origin == origin;
|
|
res &= slice.size[0] == size0;
|
|
res &= slice.size[1] == size1;
|
|
res &= slice.size[2] == size2;
|
|
res &= slice.src.stride[0] == src_sride0;
|
|
res &= slice.src.stride[1] == src_sride1;
|
|
res &= slice.src.stride[2] == src_sride2;
|
|
res &= slice.dst.stride[0] == dst_sride0;
|
|
res &= slice.dst.stride[1] == dst_sride1;
|
|
res &= slice.dst.stride[2] == dst_sride2;
|
|
res &= slice.src.offset - last_src_offset == src_offset;
|
|
res &= slice.dst.offset - last_dst_offset == dst_offset;
|
|
if(res){
|
|
canCombineNum++;
|
|
// change canCombineNum
|
|
mCombineInfo.back().mSrc_offset = src_offset;
|
|
mCombineInfo.back().mDst_offset = dst_offset;
|
|
mCombineInfo.back().mCanCombineNum = canCombineNum;
|
|
} else{
|
|
origin = slice.origin;
|
|
size0 = slice.size[0];
|
|
size1 = slice.size[1];
|
|
size2 = slice.size[2];
|
|
src_sride0 = slice.src.stride[0];
|
|
src_sride1 = slice.src.stride[1];
|
|
src_sride2 = slice.src.stride[2];
|
|
dst_sride0 = slice.dst.stride[0];
|
|
dst_sride1 = slice.dst.stride[1];
|
|
dst_sride2 = slice.dst.stride[2];
|
|
// recover
|
|
canCombineNum = 1;
|
|
// push back
|
|
mCombineInfo.push_back(CanCombineInfo(slice, 0, 0, 1));
|
|
|
|
}
|
|
}
|
|
last_src_offset = slice.src.offset;
|
|
last_dst_offset = slice.dst.offset;
|
|
}
|
|
}
|
|
|
|
REGISTER_OPENCL_OP_CREATOR(RasterBufCreator, OpType_Raster, BUFFER);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|
|
#endif /* MNN_OPENCL_BUFFER_CLOSED */
|