MNN/source/backend/opencl/execution/image/DeconvExecution.cpp

184 lines
8.6 KiB
C++

//
// DeconvExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/DeconvExecution.hpp"
#include "core/ConvolutionCommon.hpp"
namespace MNN {
namespace OpenCL {
DeconvExecution::DeconvExecution(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend)
: ConvCommonExecution(op->main_as_Convolution2D(), backend), CommonExecution(backend, op) {
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
const auto *conv2dParams = op->main_as_Convolution2D();
const auto *conv2dCommonParams = conv2dParams->common();
mResource->mConv2dCommonParams = conv2dCommonParams;
mResource->mStrides = {conv2dCommonParams->strideY(), conv2dCommonParams->strideX()};
mResource->mDilations = {conv2dCommonParams->dilateY(), conv2dCommonParams->dilateX()};
int kernelWidth = conv2dCommonParams->kernelX();
int kernelHeight = conv2dCommonParams->kernelY();
int outputChannel = conv2dCommonParams->outputCount();
const float* filterDataPtr = nullptr;
int weightSize = 0;
std::shared_ptr<ConvolutionCommon::Int8Common> quanCommon;
ConvolutionCommon::getConvParameters(&quanCommon, backend, op, &filterDataPtr, &weightSize);
int inputChannel = weightSize / (kernelWidth * kernelHeight * outputChannel);
std::vector<int> filterShape{outputChannel, inputChannel, kernelHeight, kernelWidth};
std::vector<int> filterImageShape{(int)inputChannel, (int)UP_DIV(outputChannel, 4) * kernelWidth * kernelHeight};
std::vector<float> filterDataPtrTransformed;
filterDataPtrTransformed.resize(weightSize);
IOHW2OIHW<float, int>(filterDataPtr, filterDataPtrTransformed.data(), outputChannel, inputChannel, kernelHeight,
kernelWidth);
std::shared_ptr<Tensor> filterBuffer(
Tensor::createDevice<float>({outputChannel, inputChannel, kernelHeight, kernelWidth}));
size_t buffer_size = filterBuffer->elementSize() * sizeof(float);
cl::Buffer filterBufferCL(mOpenCLBackend->getOpenCLRuntime()->context(), CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST_PTR, buffer_size);
filterBuffer->buffer().device = (uint64_t)(&filterBufferCL);
cl_int error;
auto ptrCL = mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueMapBuffer(filterBufferCL, true, CL_MAP_WRITE, 0, buffer_size, nullptr, nullptr, &error);
if(ptrCL != nullptr && error == CL_SUCCESS){
::memcpy(ptrCL, filterDataPtrTransformed.data(), filterBuffer->size());
}else{
MNN_ERROR("Map error ptrCL == nullptr \n");
}
mOpenCLBackend->getOpenCLRuntime()->commandQueue().enqueueUnmapMemObject(filterBufferCL, ptrCL);
mResource->mFilter.reset(Tensor::createDevice<float>({1, filterImageShape[1], 1, 4 * filterImageShape[0]}));
mOpenCLBackend->onAcquireBuffer(mResource->mFilter.get(), Backend::STATIC);
MNN::OpenCL::ImageBufferConvertor imageBufferConvertor{mOpenCLBackend->getOpenCLRuntime()};
std::string buildOption = "-DBUFFER_INP_FP32";
imageBufferConvertor.convertBufferToImage(filterBuffer.get(), MNN::OpenCL::CONV2D_FILTER, mResource->mFilter.get(), mOpenCLBackend->getPrecision(), false, buildOption);
mResource->mBuildOptions.emplace("-DBIAS");
if (conv2dCommonParams->relu() == true) {
mResource->mBuildOptions.emplace("-DRELU");
} else if (conv2dCommonParams->relu6() == true) {
mResource->mBuildOptions.emplace("-DRELU6");
}
}
DeconvExecution::~DeconvExecution() {
// Do nothing
}
DeconvExecution::DeconvExecution(std::shared_ptr<ConvResource> resource, const MNN::Op* op, Backend *backend)
: ConvCommonExecution(backend), CommonExecution(backend, op) {
mResource = resource;
const auto *conv2dParams = op->main_as_Convolution2D();
const auto *conv2dCommonParams = conv2dParams->common();
mResource->mConv2dParams = conv2dParams;
mResource->mConv2dCommonParams = conv2dCommonParams;
}
bool DeconvExecution::onClone(Backend* bn, const Op* op, Execution** dst) {
if (!mValid) {
return false;
}
if (nullptr == dst) {
return true;
}
*dst = new DeconvExecution(mResource, op, bn);
return true;
}
ErrorCode DeconvExecution::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
auto output = outputs[0];
auto input = inputs[0];
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
const int outputBatch = outputShape.at(0);
const int outputHeight = outputShape.at(1);
const int outputWidth = outputShape.at(2);
const int outputChannels = outputShape.at(3);
const int inputChannels = inputShape.at(3);
const int outputChannelBlocks = UP_DIV(outputChannels, 4);
const int strideHeight = mResource->mStrides[0];
const int strideWidth = mResource->mStrides[1];
auto pad = ConvolutionCommon::convolutionTransposePad(input, output, mResource->mConv2dCommonParams);
const int paddingHeight = pad.second;
const int paddingWidth = pad.first;
auto ky = mResource->mConv2dCommonParams->kernelY();
auto kx = mResource->mConv2dCommonParams->kernelX();
auto kernelSize = kx * ky;
const int transPadH = ky - 1 - pad.second;
const int transPadW = kx - 1 - pad.first;
const int alignHeight = mResource->mStrides[0] - 1 - transPadH;
const int alignWidth = mResource->mStrides[1] - 1 - transPadW;
auto runtime = mOpenCLBackend->getOpenCLRuntime();
unit.kernel = runtime->buildKernel("deconv_2d", "deconv_2d", mResource->mBuildOptions, mOpenCLBackend->getPrecision());
auto maxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
mGWS = {static_cast<uint32_t>(outputChannelBlocks), static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(outputHeight * outputBatch)};
int inputImageShape[2] = {inputShape.at(1), inputShape.at(2)};
int outputImageShape[2] = {outputHeight, outputWidth};
int strideShape[2] = {strideHeight, strideWidth};
int paddingShape[2] = {transPadH, transPadW};
int alignShape[2] = {alignHeight, alignWidth};
int kernelShape[2] = {ky, kx};
uint32_t idx = 0;
unit.kernel->get().setArg(idx++, mGWS[0]);
unit.kernel->get().setArg(idx++, mGWS[1]);
unit.kernel->get().setArg(idx++, mGWS[2]);
unit.kernel->get().setArg(idx++, openCLImage(input));
unit.kernel->get().setArg(idx++, openCLImage(mResource->mFilter.get()));
unit.kernel->get().setArg(idx++, openCLImage(mResource->mBias.get()));
unit.kernel->get().setArg(idx++, openCLImage(output));
unit.kernel->get().setArg(idx++, sizeof(inputImageShape), inputImageShape);
unit.kernel->get().setArg(idx++, sizeof(outputImageShape), outputImageShape);
unit.kernel->get().setArg(idx++, sizeof(strideShape), strideShape);
unit.kernel->get().setArg(idx++, sizeof(alignShape), alignShape);
unit.kernel->get().setArg(idx++, sizeof(paddingShape), paddingShape);
unit.kernel->get().setArg(idx++, sizeof(kernelShape), kernelShape);
unit.kernel->get().setArg(idx++, static_cast<int32_t>(kernelSize));
unit.kernel->get().setArg(idx++, static_cast<int32_t>(UP_DIV(inputChannels, 4)));
unit.kernel->get().setArg(idx++, static_cast<int32_t>(outputChannelBlocks));
std::string name = "deconv2d";
std::string info = std::to_string(inputChannels) + "_" + std::to_string(outputChannels) + "_" + std::to_string(ky) + "_" + std::to_string(kx) + "_" + std::to_string(strideHeight) + "_" + std::to_string(strideWidth);
mLWS = localWS3DDefault(mGWS, maxWorkGroupSize, mOpenCLBackend->getOpenCLRuntime(), name + info, unit.kernel, mOpenCLBackend->getCLTuneLevel(), "deconv_2d").first;
mOpenCLBackend->recordKernel3d(unit.kernel, mGWS, mLWS);
unit.globalWorkSize = {mGWS[0], mGWS[1], mGWS[2]};
unit.localWorkSize = {mLWS[0], mLWS[1], mLWS[2]};
return NO_ERROR;
}
class DeconvolutionCreator : public OpenCLBackend::Creator {
public:
virtual ~DeconvolutionCreator() = default;
virtual Execution *onCreate(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
const MNN::Op *op, Backend *backend) const override {
if(inputs.size() != 1){
return nullptr;
}
return new DeconvExecution(inputs, op, backend);
}
};
REGISTER_OPENCL_OP_CREATOR(DeconvolutionCreator, OpType_Deconvolution, IMAGE);
} // namespace OpenCL
} // namespace MNN