mirror of https://github.com/alibaba/MNN.git
130 lines
5.0 KiB
C++
130 lines
5.0 KiB
C++
//
|
|
// RoiPoolingExecution.cpp
|
|
// MNN
|
|
//
|
|
// Created by MNN on 2019/02/28.
|
|
// Copyright © 2018, Alibaba Group Holding Limited
|
|
//
|
|
|
|
#include "backend/opencl/execution/image/RoiPoolingExecution.hpp"
|
|
#include "core/Macro.h"
|
|
#include <float.h>
|
|
#include "core/TensorUtils.hpp"
|
|
|
|
namespace MNN {
|
|
namespace OpenCL {
|
|
|
|
RoiPooling::RoiPooling(const std::vector<Tensor *> &inputs, const MNN::Op *op, Backend *backend) : CommonExecution(backend, op) {
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("start RoiPooling init !\n");
|
|
#endif
|
|
mUnits.resize(1);
|
|
auto &unit = mUnits[0];
|
|
mOpenCLBackend = static_cast<OpenCLBackend *>(backend);
|
|
auto roi = op->main_as_RoiParameters();
|
|
mPooledWidth = roi->pooledWidth();
|
|
mPooledHeight = roi->pooledHeight();
|
|
mSpatialScale = roi->spatialScale();
|
|
mAreadySetArg = false;
|
|
std::set<std::string> buildOptions;
|
|
std::string kernelName = "roi_pooling";
|
|
std::vector<int> roiShape = tensorShapeFormat(inputs[1]);
|
|
const int roiHeight = roiShape.at(1);
|
|
const int roiWidth = roiShape.at(2);
|
|
const int roiChannels = roiShape.at(3);
|
|
if (roiWidth == 5) {
|
|
buildOptions.emplace("-DROI_C1H1W5");
|
|
}else if(roiChannels == 5){
|
|
buildOptions.emplace("-DROI_C5H1W1");
|
|
}
|
|
unit.kernel = mOpenCLBackend->getOpenCLRuntime()->buildKernel("roi_pooling", kernelName, buildOptions, mOpenCLBackend->getPrecision());
|
|
mMaxWorkGroupSize = static_cast<uint32_t>(mOpenCLBackend->getOpenCLRuntime()->getMaxWorkGroupSize(unit.kernel));
|
|
#ifdef LOG_VERBOSE
|
|
MNN_PRINT("end RoiPooling init !\n");
|
|
#endif
|
|
}
|
|
|
|
ErrorCode RoiPooling::onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) {
|
|
auto &unit = mUnits[0];
|
|
Tensor *input = inputs[0];
|
|
Tensor *output = outputs[0];
|
|
Tensor *roi = inputs[1];
|
|
|
|
std::vector<int> inputShape = tensorShapeFormat(input);
|
|
std::vector<int> outputShape = tensorShapeFormat(output);
|
|
std::vector<int> roiShape = tensorShapeFormat(roi);
|
|
|
|
const int batch = outputShape.at(0);
|
|
const int outputHeight = outputShape.at(1);
|
|
const int outputWidth = outputShape.at(2);
|
|
const int channels = outputShape.at(3);
|
|
|
|
const int inputBatch = inputShape.at(0);
|
|
const int inputHeight = inputShape.at(1);
|
|
const int inputWidth = inputShape.at(2);
|
|
const int inputChannels = inputShape.at(3);
|
|
|
|
int channelBlocks = (channels + 3) / 4;
|
|
|
|
std::vector<uint32_t> mGWS{1, 1, 1, 1};
|
|
std::vector<uint32_t> mLWS{1, 1, 1, 1};
|
|
mGWS = {static_cast<uint32_t>(channelBlocks),
|
|
static_cast<uint32_t>(outputWidth),
|
|
static_cast<uint32_t>(batch * outputHeight),
|
|
};
|
|
|
|
uint32_t idx = 0;
|
|
cl_int ret = CL_SUCCESS;
|
|
ret |= unit.kernel->get().setArg(idx++, mGWS[0]);
|
|
ret |= unit.kernel->get().setArg(idx++, mGWS[1]);
|
|
ret |= unit.kernel->get().setArg(idx++, mGWS[2]);
|
|
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(input));
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(roi));
|
|
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(inputHeight));
|
|
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(inputWidth));
|
|
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(inputBatch));
|
|
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(outputHeight));
|
|
ret |= unit.kernel->get().setArg(idx++, static_cast<int32_t>(outputWidth));
|
|
ret |= unit.kernel->get().setArg(idx++, static_cast<float>(mSpatialScale));
|
|
ret |= unit.kernel->get().setArg(idx++, openCLImage(output));
|
|
MNN_CHECK_CL_SUCCESS(ret, "setArg RoiPoolExecution");
|
|
|
|
mLWS = roiPoolingLocalWS(mGWS, mMaxWorkGroupSize);
|
|
mOpenCLBackend->recordKernel3d(unit.kernel, mGWS, mLWS);
|
|
unit.globalWorkSize = {mGWS[0], mGWS[1], mGWS[2]};
|
|
unit.localWorkSize = {mLWS[0], mLWS[1], mLWS[2]};
|
|
return NO_ERROR;
|
|
}
|
|
|
|
std::vector<uint32_t> RoiPooling::roiPoolingLocalWS(const std::vector<uint32_t> &gws, const uint32_t maxWorkGroupSize) {
|
|
std::vector<uint32_t> lws(4, 0);
|
|
GpuType gpuType = mOpenCLBackend->getOpenCLRuntime()->getGpuType();
|
|
uint32_t deviceComputeUnits = mOpenCLBackend->getOpenCLRuntime()->deviceComputeUnits();
|
|
int coreNum = deviceComputeUnits;
|
|
for (int i = 0, totalSizeNow = 1; i < gws.size(); ++i) {
|
|
int remain = gws[i] % coreNum, groupSize = gws[i] / coreNum;
|
|
if (remain == 0) {
|
|
lws[i] = groupSize;
|
|
} else {
|
|
while(groupSize) {
|
|
int remain = gws[i] % groupSize;
|
|
if (remain == 0 && (i > 0 || groupSize <= maxWorkGroupSize)) {
|
|
lws[i] = groupSize;
|
|
break;
|
|
}
|
|
--groupSize;
|
|
}
|
|
}
|
|
lws[i] = std::max<uint32_t>(std::min<uint32_t>(lws[i], maxWorkGroupSize / totalSizeNow), 1);
|
|
totalSizeNow *= lws[i];
|
|
}
|
|
return lws;
|
|
}
|
|
|
|
using RoiPoolingCreator = TypedCreator<RoiPooling>;
|
|
REGISTER_OPENCL_OP_CREATOR(RoiPoolingCreator, OpType_ROIPooling, IMAGE);
|
|
|
|
} // namespace OpenCL
|
|
} // namespace MNN
|