MNN/source/backend/opencl/execution/image/UnaryExecution.cpp

155 lines
7.9 KiB
C++

//
// UnaryExecution.cpp
// MNN
//
// Created by MNN on 2019/02/28.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "backend/opencl/execution/image/UnaryExecution.hpp"
namespace MNN {
namespace OpenCL {
UnaryExecution::UnaryExecution(const std::string& compute, const MNN::Op *op, Backend* backend) : CommonExecution(backend, op) {
mBuildOptions.emplace(" -DOPERATOR=" + compute);
}
ErrorCode UnaryExecution::onEncode(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs) {
mUnits.resize(1);
auto &unit = mUnits[0];
Tensor* input = inputs[0];
Tensor* output = outputs[0];
auto openCLBackend = static_cast<OpenCLBackend*>(backend());
auto runtime = openCLBackend->getOpenCLRuntime();
std::vector<int> inputShape = tensorShapeFormat(input);
std::vector<int> outputShape = tensorShapeFormat(output);
int batch = outputShape.at(0);
int outputHeight = outputShape.at(1);
int outputWidth = outputShape.at(2);
int channels = outputShape.at(3);
int channelBlocks = (channels + 3) / 4;
mGlobalWorkSize = {
static_cast<uint32_t>(channelBlocks),
static_cast<uint32_t>(outputWidth),
static_cast<uint32_t>(batch * outputHeight),
};
std::set<std::string> buildOptions = mBuildOptions;
auto dataType = inputs[0]->getType();
if (dataType.code == halide_type_int){
buildOptions.emplace("-DOPENCL_INPUT_INT");
}
unit.kernel = runtime->buildKernel("unary", "unary", buildOptions, openCLBackend->getPrecision(), inputs[0], outputs[0]);
mMaxWorkGroupSize = static_cast<uint32_t>(runtime->getMaxWorkGroupSize(unit.kernel));
uint32_t idx = 0;
cl_int ret = CL_SUCCESS;
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[0]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[1]);
ret |= unit.kernel->get().setArg(idx++, mGlobalWorkSize[2]);
ret |= unit.kernel->get().setArg(idx++, openCLImage(input));
ret |= unit.kernel->get().setArg(idx++, openCLImage(output));
MNN_CHECK_CL_SUCCESS(ret, "setArg UnaryExecution");
std::string name = "unary";
mLocalSize = localWS3DDefault(mGlobalWorkSize, mMaxWorkGroupSize, runtime, name, unit.kernel, openCLBackend->getCLTuneLevel(), "unary").first;
openCLBackend->recordKernel3d(unit.kernel, mGlobalWorkSize, mLocalSize);
unit.globalWorkSize = {mGlobalWorkSize[0], mGlobalWorkSize[1], mGlobalWorkSize[2]};
unit.localWorkSize = {mLocalSize[0], mLocalSize[1], mLocalSize[2]};
return NO_ERROR;
}
class UnaryCreator : public OpenCLBackend::Creator {
public:
virtual Execution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
const MNN::Op* op, Backend* backend) const override {
if (op->type() == OpType_UnaryOp) {
switch (op->main_as_UnaryOp()->opType()) {
case UnaryOpOperation_ABS:
return new UnaryExecution("fabs(convert_float4(in))", op, backend);
case UnaryOpOperation_SQUARE:
return new UnaryExecution("in*in", op, backend);
case UnaryOpOperation_RSQRT:
return new UnaryExecution("rsqrt(convert_float4(in)>(float4)(0.000001)?convert_float4(in):(float4)(0.000001))", op, backend);
case UnaryOpOperation_NEG:
return new UnaryExecution("-(in)", op, backend);
case UnaryOpOperation_EXP:
return new UnaryExecution("exp(convert_float4(in))", op, backend);
case UnaryOpOperation_COS:
return new UnaryExecution("cos(convert_float4(in))", op, backend);
case UnaryOpOperation_SIN:
return new UnaryExecution("sin(convert_float4(in))", op, backend);
case UnaryOpOperation_TAN:
return new UnaryExecution("tan(convert_float4(in))", op, backend);
case UnaryOpOperation_ATAN:
return new UnaryExecution("atan(convert_float4(in))", op, backend);
case UnaryOpOperation_SQRT:
return new UnaryExecution("sqrt(convert_float4(in))", op, backend);
case UnaryOpOperation_CEIL:
return new UnaryExecution("ceil(convert_float4(in))", op, backend);
case UnaryOpOperation_RECIPROCAL:
return new UnaryExecution("native_recip(convert_float4(in))", op, backend);
case UnaryOpOperation_LOG1P:
return new UnaryExecution("log1p(convert_float4(in))", op, backend);
case UnaryOpOperation_LOG:
return new UnaryExecution("native_log(convert_float4(in)>(float4)(0.0000001)?convert_float4(in):(float4)(0.0000001))", op, backend);
case UnaryOpOperation_FLOOR:
return new UnaryExecution("floor(convert_float4(in))", op, backend);
case UnaryOpOperation_BNLL:
return new UnaryExecution("in>(float4)((float)0)?(in+native_log(exp(convert_float4(-(in)))+(float4)(1.0))):(native_log(exp(convert_float4(in))+(float4)(1.0)))", op, backend);
case UnaryOpOperation_ACOSH:
return new UnaryExecution("acosh(convert_float4(in))", op, backend);
case UnaryOpOperation_SINH:
return new UnaryExecution("sinh(convert_float4(in))", op, backend);
case UnaryOpOperation_ASINH:
return new UnaryExecution("asinh(convert_float4(in))", op, backend);
case UnaryOpOperation_ATANH:
return new UnaryExecution("atanh(convert_float4(in))", op, backend);
case UnaryOpOperation_SIGN:
return new UnaryExecution("sign(convert_float4(in))", op, backend);
case UnaryOpOperation_ROUND:
return new UnaryExecution("round(convert_float4(in))", op, backend);
case UnaryOpOperation_COSH:
return new UnaryExecution("cosh(convert_float4(in))", op, backend);
case UnaryOpOperation_ERF:
return new UnaryExecution("erf(convert_float4(in))", op, backend);
case UnaryOpOperation_ERFC:
return new UnaryExecution("erfc(convert_float4(in))", op, backend);
case UnaryOpOperation_EXPM1:
return new UnaryExecution("expm1(convert_float4(in))", op, backend);
case UnaryOpOperation_SIGMOID:
return new UnaryExecution("native_recip((float4)1+native_exp(convert_float4(-in)))", op, backend);
case UnaryOpOperation_SILU:
return new UnaryExecution("(convert_float4(in)*native_recip((float4)1+native_exp(convert_float4(-in))))", op, backend);
case UnaryOpOperation_TANH:
return new UnaryExecution("tanh(convert_float4(in))", op, backend);
case UnaryOpOperation_HARDSWISH:
return new UnaryExecution("convert_float4(in)>(float4)(-3.0f)?(convert_float4(in)<(float4)(3.0f)?((convert_float4(in)*(convert_float4(in)+(float4)3.0f))/(float4)6.0f):convert_float4(in)):(float4)(0.0f)", op, backend);
case UnaryOpOperation_GELU:
return new UnaryExecution("gelu(convert_float4(in))", op, backend);
default:
break;
}
return nullptr;
}
if (op->type() == OpType_Sigmoid) {
return new UnaryExecution("native_recip((float4)(1.0)+native_exp(convert_float4(-(in))))", op, backend);
}
if (op->type() == OpType_TanH) {
return new UnaryExecution("tanh(convert_float4(in))", op, backend);
}
return nullptr;
}
};
REGISTER_OPENCL_OP_CREATOR(UnaryCreator, OpType_UnaryOp, IMAGE);
REGISTER_OPENCL_OP_CREATOR(UnaryCreator, OpType_Sigmoid, IMAGE);
REGISTER_OPENCL_OP_CREATOR(UnaryCreator, OpType_TanH, IMAGE);
} // namespace OpenCL
} // namespace MNN