MNN/source/geometry/GeometryComputerUtils.cpp

617 lines
25 KiB
C++

//
// GeometryComputerUtils.cpp
// MNN
//
// Created by MNN on 2020/05/11.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include "GeometryComputerUtils.hpp"
#include "core/OpCommonUtils.hpp"
#include "core/RuntimeFactory.hpp"
#include "shape/SizeComputer.hpp"
#include "core/AutoStorage.h"
#include "core/FileLoader.hpp"
#ifdef MNN_BUILD_CODEGEN
#include "OpFuse.hpp"
#endif
#define DEFAULT_ALLOCATE_SIZE 32
namespace MNN {
static bool _hasZeroShapeOutput(const Schedule::OpCacheInfo& info) {
for (auto t : info.outputs) {
for (int v = 0; v < t->dimensions(); ++v) {
if (t->length(v) <= 0) {
return true;
}
}
}
return false;
}
flatbuffers::Offset<Op> GeometryComputerUtils::makePool(flatbuffers::FlatBufferBuilder& builder, std::pair<int, int> kernel, std::pair<int, int> stride, PoolType type, MNN::PoolPadType pad, std::pair<int, int> pads, bool isglobal, AvgPoolCountType countType) {
PoolBuilder poolB(builder);
poolB.add_type(type);
poolB.add_padType(pad);
poolB.add_padX(pads.first);
poolB.add_padY(pads.second);
poolB.add_kernelX(kernel.first);
poolB.add_kernelY(kernel.second);
poolB.add_strideX(stride.first);
poolB.add_strideY(stride.second);
poolB.add_isGlobal(isglobal);
if (AvgPoolCountType_DEFAULT != countType) {
poolB.add_countType(countType);
}
auto poolOffset = poolB.Finish();
OpBuilder opB(builder);
opB.add_type(OpType_Pooling);
opB.add_main(poolOffset.Union());
opB.add_main_type(OpParameter_Pool);
return opB.Finish();
}
int GeometryComputerUtils::buildConstantTensors(std::vector<Schedule::OpCacheInfo>& infos) {
// Check Middle Const
for (auto& info : infos) {
if (info.op->type() == OpType_Const) {
continue;
}
bool isConst = true;
for (int i = 0; i < info.inputs.size(); ++i) {
if (TensorUtils::getDescribe(info.inputs[i])->usage == Tensor::InsideDescribe::CONSTANT) {
continue;
}
if (OpCommonUtils::opNeedContent(info.op, i)) {
isConst = false;
break;
}
}
if (isConst) {
for (auto t : info.outputs) {
TensorUtils::getDescribe(t)->usage = Tensor::InsideDescribe::CONSTANT;
}
info.type = Schedule::CONSTANT;
}
}
// Check force size compute op
int breakIndex = -1;
for (int infoIndex=0; infoIndex < infos.size(); ++infoIndex) {
auto& info = infos[infoIndex];
if (info.op->type() == OpType_Const) {
continue;
}
if (info.op->type() == OpType_Where && info.op->main_type() != OpParameter_Extra) {
// For compability old model
continue;
}
auto dims = SizeComputer::needInputContent(info.op, info.inputs.size());
for (auto index : dims) {
if (index < info.inputs.size()) {
auto des = TensorUtils::getDescribe(info.inputs[index]);
des->stageMask |= MNN::Tensor::InsideDescribe::StageInfo::GEOMETRY_STAGE;
if (des->usage != Tensor::InsideDescribe::CONSTANT) {
breakIndex = infoIndex;
TensorUtils::getDescribe(info.inputs[index])->usage = Tensor::InsideDescribe::CONSTANT;
}
if (des->isMutable) {
info.computeCache.addContentIndex(index);
}
}
}
}
if (breakIndex >= 0) {
bool hasConst = true;
while (hasConst) {
hasConst = false;
for (auto& info : infos) {
if (info.type == Schedule::CONSTANT) {
continue;
}
bool turnConst = false;
for (auto t : info.outputs) {
if (TensorUtils::getDescribe(t)->usage == Tensor::InsideDescribe::CONSTANT) {
turnConst = true;
break;
}
}
if (turnConst) {
for (auto t : info.outputs) {
TensorUtils::getDescribe(t)->usage = Tensor::InsideDescribe::CONSTANT;
}
for (auto t : info.inputs) {
TensorUtils::getDescribe(t)->usage = Tensor::InsideDescribe::CONSTANT;
}
info.type = Schedule::CONSTANT;
hasConst = true;
}
}
}
}
for (auto& info : infos) {
if (info.type == Schedule::CONSTANT) {
for (auto t : info.inputs) {
TensorUtils::getDescribe(t)->stageMask |= MNN::Tensor::InsideDescribe::StageInfo::GEOMETRY_STAGE;
}
for (auto t : info.outputs) {
TensorUtils::getDescribe(t)->usage = Tensor::InsideDescribe::CONSTANT;
}
}
}
return breakIndex;
}
ErrorCode GeometryComputerUtils::shapeComputeAndGeometryTransform(
const Runtime* cpuRuntime,
FileLoader* external,
std::vector<Schedule::OpCacheInfo>& infos,
GeometryComputer::Context& geoContext,
std::shared_ptr<Backend> backupBackend,
Runtime::CompilerType compileType,
bool skipShapeCompute,
bool permitCodegen) {
bool openCache = geoContext.support(Interpreter::GeometryComputeMask::GEOMETRCOMPUTEMASK_OPENCACHE);
/** Size Compute and compute Const Begin */
GeometryComputer::Context ctx(Interpreter::GeometryComputeMask::GEOMETRCOMPUTEMASK_ALL, backupBackend);
bool needRelease = geoContext.mNeedRelease;
// Size Compute and compute Const
for (int i=0; i<infos.size(); ++i) {
auto& info = infos[i];
auto& cmdBufferVir = info.executeBuffer;
auto& tempBuffer = info.cacheBuffer;
// TODO: Optimize
for (auto t : info.outputs) {
if (!TensorUtils::getDescribe(t)->isMutable) {
continue;
}
auto des = TensorUtils::getDescribe(t);
auto usage = des->usage;
auto type = des->memoryType;
MNN_ASSERT(type != Tensor::InsideDescribe::MEMORY_OUTSIDE);
MNN_ASSERT(type != Tensor::InsideDescribe::MEMORY_HOST);
if (TensorUtils::getDescribeOrigin(t)->mContent.use_count() > 1) {
TensorUtils::getDescribeOrigin(t)->mContent.reset(new Tensor::InsideDescribe::NativeInsideDescribe);
t->buffer().dim = TensorUtils::getDescribe(t)->dims;
TensorUtils::getDescribeOrigin(t)->setBackend(nullptr);
TensorUtils::getDescribeOrigin(t)->mem = nullptr;
TensorUtils::getDescribe(t)->usage = usage;
info.computeCache.close();
} else if (des->group == 0) {
if (info.type != Schedule::CONSTANT && usage != Tensor::InsideDescribe::TRAINABLE) {
TensorUtils::getDescribeOrigin(t)->setBackend(nullptr);
// TODO: If output is static and length larger than new size, don't clear mem
TensorUtils::getDescribeOrigin(t)->mem = nullptr;
}
}
}
for (auto t : info.outputs) {
TensorUtils::getDescribe(t)->stageMask &= (~Tensor::InsideDescribe::StageInfo::COMPUTE_SHAPE_STAGE);
}
bool compared = false;
bool needCompute = !info.computeCache.match(info.inputs, compared);
if (needCompute && compared) {
// If not match, means the op's shape is mutable, close cache and don't compare
info.computeCache.close(false);
}
if ((!skipShapeCompute) && needCompute) {
auto res = SizeComputer::computeOutputSize(info.op, info.inputs, info.outputs);
if (!res) {
if (info.op->name() != nullptr) {
MNN_ERROR("Compute Shape Error for %s\n", info.op->name()->c_str());
} else {
MNN_ERROR("Compute Shape Error for %d\n", info.op->type());
}
return COMPUTE_SIZE_ERROR;
}
// FIXME: Find better way to may compability for old model
/**
For Convolution of 2D / 3D Tensor(Dense / 1D Convolution)
Because of old code, we will acces dim[2] / dim[3] to get width and height
Set the lenght to 1 for compability
*/
for (auto t : info.outputs) {
TensorUtils::adjustTensorForCompability(t);
}
for (auto t: info.inputs) {
TensorUtils::adjustTensorForCompability(t);
}
info.computeCache.insert(info.inputs);
for (auto t : info.outputs) {
TensorUtils::getDescribe(t)->rasterCommand.reset();
TensorUtils::getDescribe(t)->stageMask |= Tensor::InsideDescribe::StageInfo::COMPUTE_SHAPE_STAGE;
// The content may be computed by geometry computer, which will not make execution
TensorUtils::getDescribe(t)->stageMask &= (~Tensor::InsideDescribe::StageInfo::CONTENT_NOT_CHANGE);
}
}
info.computeCache.needComputeShape = needCompute;
if (info.type != Schedule::CONSTANT) {
continue;
}
if (!needCompute) {
for (auto t : info.outputs) {
TensorUtils::getDescribe(t)->stageMask |= Tensor::InsideDescribe::StageInfo::CONTENT_NOT_CHANGE;
}
}
if (_hasZeroShapeOutput(info)) {
continue;
}
// Skip geometry compute if no-needCompute
if (needCompute) {
cmdBufferVir.command.clear();
cmdBufferVir.extras.clear();
ctx.clear();
auto geo = GeometryComputer::search(info.op->type(), Runtime::Compiler_Loop);
{
bool res = false;
if (openCache) {
res = geo->onRecompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);
}
if (!res) {
tempBuffer.command.clear();
tempBuffer.extras.clear();
res = geo->onCompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);
}
if (!res) {
MNN_ERROR("Const Folder Error in geometry for %s\n", info.op->name()->c_str());
return NOT_SUPPORT;
}
}
GeometryComputerUtils::makeRaster(tempBuffer, cmdBufferVir, ctx);
for (auto t : info.outputs) {
ctx.getRasterCacheCreateRecursive(t, cmdBufferVir);
if (Tensor::InsideDescribe::MEMORY_VIRTUAL == TensorUtils::getDescribe(t)->memoryType) {
TensorUtils::getDescribe(t)->memoryType = Tensor::InsideDescribe::MEMORY_BACKEND;
}
}
for (auto& cp : cmdBufferVir.command) {
auto& c = *cp;
std::shared_ptr<BufferStorage> tmpStorge;
if (nullptr == c.execution) {
auto opIter = info.executionCache.find(c.op);
if (opIter != info.executionCache.end()) {
c.execution = opIter->second;
} else {
auto exe = OpCommonUtils::createExecutionWithExternal(backupBackend.get(), c.inputs, c.outputs, c.op, external, tmpStorge);
c.execution.reset(exe);
}
}
auto exe = c.execution;
if (nullptr == exe.get()) {
MNN_ERROR("Const Folder Error for %s\n", info.op->name()->c_str());
return NO_EXECUTION;
}
backupBackend->onResizeBegin();
for (auto t : c.outputs) {
auto des = TensorUtils::getDescribeOrigin(t);
TensorUtils::setLinearLayout(t);
auto res = backupBackend->onAcquireBuffer(t, Backend::STATIC);
if (!res) {
return OUT_OF_MEMORY;
}
des->setBackend(backupBackend.get());
}
auto code = exe->onResize(c.inputs, c.outputs);
if (NO_ERROR != code) {
return NOT_SUPPORT;
}
code = backupBackend->onResizeEnd();
if (NO_ERROR != code) {
return NOT_SUPPORT;
}
}
}
for (auto& cp : cmdBufferVir.command) {
auto& c = *cp;
bool dirty = needCompute || c.op->type() == OpType_RandomNormal || c.op->type() == OpType_RandomUniform;
if (!dirty) {
for (auto t : c.inputs) {
auto des = TensorUtils::getDescribe(t);
if (!des->isMutable) {
continue;
}
if (des->group < 0) {
// From User Input, group = -1
dirty = true;
break;
}
if ((des->stageMask & Tensor::InsideDescribe::StageInfo::CONTENT_NOT_CHANGE) == 0) {
dirty = true;
break;
}
}
}
info.computeCache.needExecuteConst = dirty;
if (dirty) {
backupBackend->onExecuteBegin();
if (cpuRuntime->pCurrentStatus != NO_ERROR) {
return (ErrorCode)cpuRuntime->pCurrentStatus;
}
auto code = cp->execution->onExecute(c.inputs, c.outputs);
if (NO_ERROR != code) {
return NOT_SUPPORT;
}
backupBackend->onExecuteEnd();
for (auto t : c.outputs) {
TensorUtils::getDescribe(t)->stageMask &= (~Tensor::InsideDescribe::StageInfo::CONTENT_NOT_CHANGE);
}
} else {
for (auto t : c.outputs) {
TensorUtils::getDescribe(t)->stageMask |= Tensor::InsideDescribe::StageInfo::CONTENT_NOT_CHANGE;
}
}
}
if (needRelease) {
cmdBufferVir.command.clear();
cmdBufferVir.extras.clear();
ctx.clear();
for (auto index : info.releaseAbleInputs) {
TensorUtils::getDescribeOrigin(info.inputs[index])->mem = nullptr;
}
}
}
/** Size Compute and compute Const End */
/** Geometry Transform */
for (int i=0; i<infos.size(); ++i) {
auto& info = infos[i];
auto& cmdBufferReal = info.executeBuffer;
auto& tempBuffer = info.cacheBuffer;
// TODO: Optimize
if (info.type == Schedule::CONSTANT) {
continue;
}
if ((!info.computeCache.needComputeShape) && (!tempBuffer.hasWrap)) {
continue;
}
cmdBufferReal.command.clear();
cmdBufferReal.extras.clear();
if (_hasZeroShapeOutput(info)) {
continue;
}
auto geo = GeometryComputer::search(info.op->type(), compileType);
{
bool res = false;
if ((!tempBuffer.hasWrap) && openCache) {
res = geo->onRecompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);
}
if (!res) {
tempBuffer.command.clear();
tempBuffer.extras.clear();
res = geo->onCompute(info.op, info.inputs, info.outputs, geoContext, tempBuffer);
}
if (!res) {
return NOT_SUPPORT;
}
tempBuffer.hasWrap = false;
GeometryComputerUtils::makeRaster(tempBuffer, cmdBufferReal, geoContext);
for (int v=0; v<info.outputs.size(); ++v) {
auto t = info.outputs[v];
auto des = TensorUtils::getDescribe(t);
if (des->usage == Tensor::InsideDescribe::OUTPUT || des->usage == Tensor::InsideDescribe::TRAINABLE) {
// For output and trainable value, must directly compute the tensor
geoContext.getRasterCacheCreateRecursive(t, cmdBufferReal);
if (des->memoryType == Tensor::InsideDescribe::MEMORY_VIRTUAL) {
des->memoryType = Tensor::InsideDescribe::MEMORY_BACKEND;
}
}
}
}
}
#ifdef MNN_BUILD_CODEGEN
if(permitCodegen) {
#ifdef LOG_VERPOSE
MNN_PRINT("infos : [\n");
for (auto info : infos) {
auto& cmds = info.executeBuffer.command;
for (auto cmd : cmds) {
MNN_PRINT("\t%s", EnumNameOpType(cmd->op->type()));
if(cmd->op->type() == OpType_BinaryOp) {
MNN_PRINT(" %d ", cmd->op->main_as_BinaryOp()->opType());
}
if(cmd->op->type() == OpType_UnaryOp) {
MNN_PRINT(" %d ", cmd->op->main_as_UnaryOp()->opType());
}
MNN_PRINT("\n");
}
}
MNN_PRINT("]\n");
MNN_PRINT("==================== opFuse ====================\n");
#endif
opFuse(infos, geoContext.forwardType(), geoContext.precisionType());
#ifdef LOG_VERPOSE
MNN_PRINT("infos : [\n");
for (auto info : infos) {
auto& cmds = info.executeBuffer.command;
for (auto cmd : cmds) {
MNN_PRINT("\t%s\n", EnumNameOpType(cmd->op->type()));
}
}
MNN_PRINT("]\n");
#endif
}
#endif
return NO_ERROR;
}
void GeometryComputerUtils::makeRaster(const CommandBuffer& srcBuffer, CommandBuffer& dstBuffer,
GeometryComputer::Context& ctx) {
dstBuffer.extras = srcBuffer.extras;
for (int index = 0; index < srcBuffer.command.size(); ++index) {
auto& iter = *srcBuffer.command[index];
const Op* op = iter.op;
auto& cmd = iter;
auto type = op->type();
MNN_ASSERT(OpType_Raster != type);
for (int i = 0; i < iter.inputs.size(); ++i) {
if (!OpCommonUtils::opNeedContent(op, i)) {
continue;
}
ctx.getRasterCacheCreateRecursive(cmd.inputs[i], dstBuffer);
}
dstBuffer.command.emplace_back(srcBuffer.command[index]);
}
}
std::shared_ptr<Command> GeometryComputerUtils::makeBinary(int type, Tensor* input0, Tensor* input1, Tensor* output) {
flatbuffers::FlatBufferBuilder builder(DEFAULT_ALLOCATE_SIZE);
BinaryOpBuilder builder_(builder);
builder_.add_opType(type);
auto mainOffset = builder_.Finish().Union();
OpBuilder opB(builder);
opB.add_type(OpType_BinaryOp);
opB.add_main(mainOffset);
opB.add_main_type(OpParameter_BinaryOp);
builder.Finish(opB.Finish());
std::shared_ptr<Command> cmdP(new Command);
auto& cmd = *cmdP;
cmd.buffer.reset(new BufferStorage);
cmd.buffer->storage = builder.ReleaseRaw(cmd.buffer->allocated_size, cmd.buffer->offset);
cmd.inputs = {input0, input1};
cmd.outputs = {output};
cmd.op = flatbuffers::GetRoot<Op>(cmd.buffer->buffer());
return cmdP;
}
std::shared_ptr<Command> GeometryComputerUtils::makeReduce(ReductionType type, Tensor* input0, Tensor* output) {
flatbuffers::FlatBufferBuilder builder(DEFAULT_ALLOCATE_SIZE);
auto vec = builder.CreateVector(std::vector<int>{1});
ReductionParamBuilder builder_(builder);
builder_.add_operation(type);
builder_.add_keepDims(true);
builder_.add_dim(vec);
auto mainOffset = builder_.Finish().Union();
OpBuilder opB(builder);
opB.add_type(OpType_Reduction);
opB.add_main(mainOffset);
opB.add_main_type(OpParameter_ReductionParam);
builder.Finish(opB.Finish());
std::shared_ptr<Command> cmdP(new Command);
auto& cmd = *cmdP;
cmd.buffer.reset(new BufferStorage);
cmd.buffer->storage = builder.ReleaseRaw(cmd.buffer->allocated_size, cmd.buffer->offset);
cmd.inputs = {input0};
cmd.outputs = {output};
cmd.op = flatbuffers::GetRoot<Op>(cmd.buffer->buffer());
return cmdP;
}
std::shared_ptr<Command> GeometryComputerUtils::makeLayerNorm(Tensor* input0, Tensor* output, std::vector<int32_t> axis, float epsilon, std::vector<float> gamma, std::vector<float> beta, std::vector<int64_t> external, int group, bool useRMS) {
flatbuffers::FlatBufferBuilder builder(DEFAULT_ALLOCATE_SIZE);
std::vector<float> g, b;
auto vecaxis = builder.CreateVector(axis);
auto vecgamma = builder.CreateVector(g);
auto vecbeta = builder.CreateVector(b);
if (gamma.size() > 0 && beta.size() > 0) {
vecgamma = builder.CreateVector(gamma.data(), gamma.size());
vecbeta = builder.CreateVector(beta.data(), beta.size());
}
auto vecexternal = builder.CreateVector(external);
LayerNormBuilder builder_(builder);
builder_.add_axis(vecaxis);
builder_.add_group(group);
builder_.add_epsilon(epsilon);
if (gamma.size() > 0 && beta.size() > 0) {
builder_.add_gamma(vecgamma);
builder_.add_beta(vecbeta);
}
builder_.add_useRMSNorm(useRMS);
builder_.add_external(vecexternal);
auto mainOffset = builder_.Finish().Union();
OpBuilder opB(builder);
opB.add_type(OpType_LayerNorm);
opB.add_main(mainOffset);
opB.add_main_type(OpParameter_LayerNorm);
builder.Finish(opB.Finish());
std::shared_ptr<Command> cmdP(new Command);
auto& cmd = *cmdP;
cmd.buffer.reset(new BufferStorage);
cmd.buffer->storage = builder.ReleaseRaw(cmd.buffer->allocated_size, cmd.buffer->offset);
cmd.inputs = {input0};
cmd.outputs = {output};
cmd.op = flatbuffers::GetRoot<Op>(cmd.buffer->buffer());
return cmdP;
}
std::shared_ptr<Command> GeometryComputerUtils::makeUnary(UnaryOpOperation type, Tensor* input0, Tensor* output) {
flatbuffers::FlatBufferBuilder builder(DEFAULT_ALLOCATE_SIZE);
UnaryOpBuilder builder_(builder);
builder_.add_opType(type);
auto mainOffset = builder_.Finish().Union();
OpBuilder opB(builder);
opB.add_type(OpType_UnaryOp);
opB.add_main(mainOffset);
opB.add_main_type(OpParameter_UnaryOp);
builder.Finish(opB.Finish());
std::shared_ptr<Command> cmdP(new Command);
auto& cmd = *cmdP;
cmd.buffer.reset(new BufferStorage);
cmd.buffer->storage = builder.ReleaseRaw(cmd.buffer->allocated_size, cmd.buffer->offset);
cmd.inputs = {input0};
cmd.outputs = {output};
cmd.op = flatbuffers::GetRoot<Op>(cmd.buffer->buffer());
return cmdP;
}
std::shared_ptr<Command> GeometryComputerUtils::makeCommand(flatbuffers::FlatBufferBuilder& builder, const std::vector<Tensor*>& inputs,
const std::vector<Tensor*>& outputs) {
std::shared_ptr<Command> cmdP(new Command);
auto& cmd = *cmdP;
cmd.buffer.reset(new BufferStorage);
cmd.buffer->storage = builder.ReleaseRaw(cmd.buffer->allocated_size, cmd.buffer->offset);
cmd.outputs = outputs;
cmd.inputs = inputs;
cmd.op = flatbuffers::GetRoot<Op>(cmd.buffer->buffer());
return cmdP;
}
std::shared_ptr<Command> GeometryComputerUtils::makeMatMul(Tensor* input0, Tensor* input1, Tensor* output, Tensor* Bias, bool transposeA,
bool transposeB) {
std::shared_ptr<Command> cmdP(new Command);
auto& cmd = *cmdP;
flatbuffers::FlatBufferBuilder builder(DEFAULT_ALLOCATE_SIZE);
MatMulBuilder builder_(builder);
builder_.add_transposeA(transposeA);
builder_.add_transposeB(transposeB);
auto mainOffset = builder_.Finish().Union();
OpBuilder opB(builder);
opB.add_type(OpType_MatMul);
opB.add_main(mainOffset);
opB.add_main_type(OpParameter_MatMul);
builder.Finish(opB.Finish());
cmd.buffer.reset(new BufferStorage);
cmd.buffer->storage = builder.ReleaseRaw(cmd.buffer->allocated_size, cmd.buffer->offset);
if (nullptr == Bias) {
cmd.inputs = {input0, input1};
} else {
cmd.inputs = {input0, input1, Bias};
}
cmd.outputs = {output};
cmd.op = flatbuffers::GetRoot<Op>(cmd.buffer->buffer());
return cmdP;
}
Tensor::InsideDescribe::Region GeometryComputerUtils::makeRawAddressRef(Tensor* src, int srcOffset, int size,
int dstOffset) {
Tensor::InsideDescribe::Region reg;
// Default is 1, 1, 1
reg.size[2] = size;
// Default is 0, 1, 1, 1
reg.src.offset = srcOffset;
reg.dst.offset = dstOffset;
reg.origin = src;
return reg;
}
void GeometryComputerUtils::makeRawAddressRef(Tensor* dst, Tensor* src, int srcOffset, int size, int dstOffset) {
auto describe = TensorUtils::getDescribe(dst);
describe->memoryType = Tensor::InsideDescribe::MEMORY_VIRTUAL;
describe->regions = {makeRawAddressRef(src, srcOffset, size, dstOffset)};
}
}; // namespace MNN