MNN/source/geometry/GeometryConv2D.cpp

225 lines
9.7 KiB
C++

//
// GeometryConv2D.cpp
// MNN
//
// Created by MNN on 2020/07/14.
// Copyright © 2018, Alibaba Group Holding Limited
//
#include <limits>
#include "ConvertUtils.hpp"
#include "GeometryConvUtils.hpp"
#define MNN_OPEN_TIME_TRACE
#include <MNN/AutoTime.hpp>
namespace MNN {
class GeometryConv2D : public DefaultGeometryComputer {
public:
virtual bool onRecompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
return false;
}
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
// Origin convolution with format converter
return GeometryConvUtils::computeSingle(op, inputs, outputs, context, res);
}
};
class GeometryConvTranspose2D : public GeometryConv2D {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
if (op->main_as_Convolution2D()->common()->hasOutputShape()) {
const std::vector<Tensor*> newInputs(inputs.begin(), inputs.end() - 1);
// Origin convolution with format converter
return GeometryConvUtils::computeSingle(op, newInputs, outputs, context, res);
}
// Origin convolution with format converter
return GeometryConvUtils::computeSingle(op, inputs, outputs, context, res);
}
};
class GeometryIm2Col : public GeometryConv2D {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto common = op->main_as_Convolution2D()->common();
auto input = inputs[0];
auto output = outputs[0];
auto kw = common->kernelX();
auto kh = common->kernelY();
auto sw = common->strideX();
auto sh = common->strideY();
auto dw = common->dilateX();
auto dh = common->dilateY();
int pl,pt,pr,pb;
if (common->pads() == nullptr) {
pl = common->padX();
pr = common->padX();
pt = common->padY();
pb = common->padY();
} else {
pl = common->pads()->data()[1];
pr = common->pads()->data()[3];
pt = common->pads()->data()[0];
pb = common->pads()->data()[2];
}
auto batch = input->batch();
auto ic = input->channel();
auto iw = input->width();
auto ih = input->height();
auto pads = std::make_pair(pl, pt);
auto ow = (iw + pl + pr - kw) / sw + 1;
auto oh = (ih + pt + pb - kh) / sh + 1;
auto tmpT = GeometryConvUtils::im2Col(output, input, ic, kh, kw, batch, oh, ow, ih, iw, sh, sw, dh, dw, pads);
if (nullptr != tmpT) {
res.extras.emplace_back(tmpT);
}
return true;
}
};
class GeometryCol2Im : public GeometryConv2D {
public:
virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
Context& context, CommandBuffer& res) const override {
auto common = op->main_as_Convolution2D()->common();
auto input = inputs[0];
auto output = outputs[0];
auto kw = common->kernelX();
auto kh = common->kernelY();
auto sw = common->strideX();
auto sh = common->strideY();
auto dw = common->dilateX();
auto dh = common->dilateY();
int pl,pt,pr,pb;
if (common->pads() == nullptr) {
pl = common->padX();
pr = common->padX();
pt = common->padY();
pb = common->padY();
} else {
pl = common->pads()->data()[1];
pr = common->pads()->data()[3];
pt = common->pads()->data()[0];
pb = common->pads()->data()[2];
}
auto batch = output->batch();
auto ic = output->channel();
auto iw = output->width();
auto ih = output->height();
auto pads = std::make_pair(pl, pt);
auto ow = (iw + pl + pr - kw) / sw + 1;
auto oh = (ih + pt + pb - kh) / sh + 1;
auto shape = output->shape();
auto ishape = input->shape();
int n = ishape[0];
int ickhkw = ishape[1];
int ohow = ishape[2];
// set batch = 1, then loopNumber = batch
auto tmpIm2Col = GeometryConvUtils::im2Col(output, input, ic, kh, kw, 1, oh, ow, ih, iw, sh, sw, dh, dw, pads);
if (nullptr != tmpIm2Col) {
res.extras.emplace_back(tmpIm2Col);
}
auto des = TensorUtils::getDescribe(output);
// build cmd
flatbuffers::FlatBufferBuilder builder;
OpBuilder bianryOp(builder);
bianryOp.add_type(OpType_UnaryOp);
auto bianryOpOffset = bianryOp.Finish();
auto iterIndexesOffset = builder.CreateVector(std::vector<int>{-1, -1});
auto stepOffset = builder.CreateVector(std::vector<int>{ic*iw*ih, ickhkw*ohow});
auto indexesOffset = builder.CreateVector(std::vector<int>{1, 0});
std::vector<flatbuffers::Offset<RegionCommand>> rcmdAllOffset;
for (auto& region : des->regions) {
auto tmp = region.dst;
region.dst = region.src;
region.src = tmp;
//size
auto sizeOffset = builder.CreateVector(std::vector<int>{region.size[0], region.size[1], region.size[2]});
// View 0 - dst
auto view0Stride = builder.CreateVector(std::vector<int>{region.dst.stride[0], region.dst.stride[1], region.dst.stride[2]});
ViewBuilder view0Builder(builder);
view0Builder.add_offset(region.dst.offset);
view0Builder.add_stride(view0Stride);
auto view0Offset = view0Builder.Finish();
// View 1 - src
auto view1Stride = builder.CreateVector(std::vector<int>{region.src.stride[0], region.src.stride[1], region.src.stride[2]});
ViewBuilder view1Builder(builder);
view1Builder.add_offset(region.src.offset);
view1Builder.add_stride(view1Stride);
auto view1Offset = view1Builder.Finish();
auto viewAllOffset = builder.CreateVector<flatbuffers::Offset<View>>({view0Offset, view1Offset});
RegionCommandBuilder rcmdBuild(builder);
rcmdBuild.add_op(bianryOpOffset);
rcmdBuild.add_view(viewAllOffset);
rcmdBuild.add_indexes(indexesOffset);
rcmdBuild.add_iterIndexes(iterIndexesOffset);
rcmdBuild.add_steps(stepOffset);
rcmdBuild.add_size(sizeOffset);
rcmdBuild.add_fuse(BinaryOpOperation_ADD); // zreduce add
rcmdAllOffset.push_back(rcmdBuild.Finish());
}
auto rcmdAllOffsets = builder.CreateVector<flatbuffers::Offset<RegionCommand>>(rcmdAllOffset);
auto inputIndexesOffset = builder.CreateVector(std::vector<int>{0});
auto outputIndexesOffset = builder.CreateVector(std::vector<int>{1});
// view0 and view1 is the same
RegionCommandBuilder initrcmdBuild(builder);
initrcmdBuild.add_indexes(outputIndexesOffset);
auto initrcmdOffset = initrcmdBuild.Finish();
auto initrcmdOffsetMulti = builder.CreateVector<flatbuffers::Offset<RegionCommand>>({initrcmdOffset});
std::vector<flatbuffers::Offset<RegionCommand>> initCommandOffsets;
initCommandOffsets.emplace_back(initrcmdOffset);
LoopParamBuilder loopBuilder(builder);
loopBuilder.add_initCommand(initrcmdOffsetMulti);
loopBuilder.add_commands(rcmdAllOffsets);
loopBuilder.add_loopNumber(batch);
loopBuilder.add_tensorNumber(2);
loopBuilder.add_parallel(true);
loopBuilder.add_inputIndexes(inputIndexesOffset);
loopBuilder.add_outputIndexes(outputIndexesOffset);
auto loopOffset = loopBuilder.Finish();
flatbuffers::Offset<flatbuffers::String> nameOffset;
if (nullptr != op->name()) {
nameOffset = builder.CreateString(op->name()->c_str());
}
OpBuilder finishBuilder(builder);
finishBuilder.add_main(loopOffset.Union());
finishBuilder.add_main_type(OpParameter_LoopParam);
finishBuilder.add_type(OpType_While);
if (nullptr != op->name()) {
finishBuilder.add_name(nameOffset);
}
builder.Finish(finishBuilder.Finish());
auto cmd = GeometryComputerUtils::makeCommand(builder, {inputs[0]}, outputs);
res.command.emplace_back(std::move(cmd));
des->regions.clear();
TensorUtils::getDescribe(output)->memoryType = Tensor::InsideDescribe::MEMORY_BACKEND;
output->buffer().dimensions = shape.size();
for (int i = 0; i < shape.size(); i++) {
output->setLength(i, shape[i]);
}
TensorUtils::setLinearLayout(output);
return true;
}
};
static void _create() {
std::shared_ptr<GeometryComputer> comp(new GeometryConv2D);
GeometryComputer::registerGeometryComputer(comp, {OpType_Convolution});
std::shared_ptr<GeometryComputer> comp2(new GeometryConvTranspose2D);
GeometryComputer::registerGeometryComputer(comp2, {OpType_Deconvolution});
std::shared_ptr<GeometryComputer> comp3(new GeometryIm2Col);
GeometryComputer::registerGeometryComputer(comp3, {OpType_Im2Col});
std::shared_ptr<GeometryComputer> comp4(new GeometryCol2Im);
GeometryComputer::registerGeometryComputer(comp4, {OpType_Col2Im});
}
REGISTER_GEOMETRY(GeometryConv2D, _create);
} // namespace MNN